This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358379 #11 Nov 27 2022 10:33:45 %S A358379 0,1,2,1,3,2,2,1,2,3,2,2,3,2,2,1,4,2,3,3,3,2,2,2,2,3,2,2,3,2,2,1,3,4, %T A358379 2,2,3,3,3,3,2,3,2,2,3,2,2,2,4,2,3,3,3,2,2,2,2,3,2,2,3,2,2,1,3,3,4,4, %U A358379 3,2,2,2,3,3,3,3,3,3,3,3,4,2,3,3,3,2,2 %N A358379 Edge-height (or depth) of the n-th standard ordered rooted tree. %C A358379 We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees. %H A358379 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A358379 The standard ordered rooted tree ranking begins: %e A358379 1: o 10: (((o))o) 19: (((o))(o)) %e A358379 2: (o) 11: ((o)(o)) 20: (((o))oo) %e A358379 3: ((o)) 12: ((o)oo) 21: ((o)((o))) %e A358379 4: (oo) 13: (o((o))) 22: ((o)(o)o) %e A358379 5: (((o))) 14: (o(o)o) 23: ((o)o(o)) %e A358379 6: ((o)o) 15: (oo(o)) 24: ((o)ooo) %e A358379 7: (o(o)) 16: (oooo) 25: (o(oo)) %e A358379 8: (ooo) 17: ((((o)))) 26: (o((o))o) %e A358379 9: ((oo)) 18: ((oo)o) 27: (o(o)(o)) %e A358379 For example, the 52nd ordered tree is (o((o))oo) so a(52) = 3. %t A358379 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358379 srt[n_]:=If[n==1,{},srt/@stc[n-1]]; %t A358379 Table[Depth[srt[n]]-2,{n,100}] %Y A358379 Records occur at A004249. %Y A358379 The triangle counting trees by this statistic is A080936, unordered A034781. %Y A358379 Unordered version is A109082, nodes A061775, leaves A109129, edges A196050. %Y A358379 Leaves are counted by A358371. %Y A358379 Nodes are counted by A358372. %Y A358379 Node-height is a(n) + 1, unordered version is A358552. %Y A358379 A000081 counts unordered rooted trees, ranked by A358378. %Y A358379 A000108 counts ordered rooted trees. %Y A358379 A001263 counts ordered rooted trees by leaves. %Y A358379 Cf. A005043, A055277, A187306, A358373, A358374, A358375, A358376, A358377. %K A358379 nonn %O A358379 1,3 %A A358379 _Gus Wiseman_, Nov 16 2022