This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358388 #22 Jan 08 2024 05:19:07 %S A358388 1,5,89,2069,53505,1467765,41817305,1223277221,36488826881, %T A358388 1104851215205,33853917808089,1047387818876085,32664869254856961, %U A358388 1025606670801743061,32387641973278794585,1027864812983545977669,32762392278424747311105,1048268251830512324353221 %N A358388 a(n) = hypergeom([n, -n, 1/2], [1, 1], -8). %F A358388 a(n) = Sum_{k=0..n} 2^(k - 1) * binomial(2*k, k)^2 * (binomial(n + k, 2*k) + binomial(n + k - 1, 2*k)). %F A358388 a(n) = (i/Pi)*Integral_{t=0..1} hypergeom([n, -n],[1], -8*t)/sqrt(t*(t-1)). %F A358388 a(n) ~ 3*sqrt(2) * (1 + sqrt(2))^(4*n) / (8*Pi*n). - _Vaclav Kotesovec_, Jan 08 2024 %p A358388 a := n -> hypergeom([n, -n, 1/2], [1, 1], -8): %p A358388 seq(simplify(a(n)), n = 0..17); %p A358388 # Alternative: %p A358388 A358388 := proc(n) local a; %p A358388 a := proc(n) option remember; if n < 3 then return [1, 1, 9][n + 1] fi; %p A358388 ((n - 3)^2*(2*n - 3)*a(n - 3) - (35*(n - 4)*n + 131)*((2*n - 5)*a(n - 2) %p A358388 + (3 - 2*n)*a(n - 1))) / ((n - 1)^2*(2*n - 5)) end: %p A358388 (a(n + 1) + a(n)) / 2 end: seq(A358388(n), n = 0..17); %t A358388 a[n_] := HypergeometricPFQ[{n, -n, 1/2}, {1, 1}, -8]; %t A358388 Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Nov 27 2023 *) %o A358388 (Python) %o A358388 def A358388gen() -> Generator: %o A358388 c, b, a, n = 1, 1, 9, 2 %o A358388 while True: %o A358388 yield (c + b) // 2 %o A358388 n += 1 %o A358388 f = 35 * (n - 4) * n + 131 %o A358388 aa = a * f * (2 * n - 3) %o A358388 bb = b * f * (2 * n - 5) %o A358388 cc = c * (n - 3) ** 2 * (2 * n - 3) %o A358388 d = (aa - bb + cc) // ((n - 1) ** 2 * (2 * n - 5)) %o A358388 c, b, a = b, a, d %o A358388 A358388 = A358388gen() %o A358388 print([next(A358388) for n in range(18)]) %Y A358388 Cf. A001850, A243949, A358387. %K A358388 nonn %O A358388 0,2 %A A358388 _Peter Luschny_, Nov 13 2022