This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358393 #12 Nov 21 2022 09:49:45 %S A358393 261977,496163,1943101,2204273,2502827,2632627,2822381,2878543, %T A358393 3291593,3431891,4122043,4269679,5205671,5224361,5565139,6248881, %U A358393 6600989,6881291,7568963,8181317,8251277,8377777,9005561,9644911,10226233,11096753,11767801,12252271,13197361,13574489,13730263,14064901 %N A358393 First of three consecutive primes p,q,r such that p*q + p*r - q*r, p*q - p*r + q*r and -p*q + p*r + q*r are all prime. %H A358393 Robert Israel, <a href="/A358393/b358393.txt">Table of n, a(n) for n = 1..2000</a> %e A358393 a(1) = 261977 is a term because 261977, 261983 and 262007 are consecutive primes with 261977*261983 + 261977*262007 - 261983*262007 = 68631948349, %e A358393 261977*261983 - 261977*262007 + 261983*262007 = 68635092433, and %e A358393 -261977*261983 + 261977*262007 + 261983*262007 = 68647667329 prime. %p A358393 q:= 2: r:= 3: %p A358393 R:= NULL: count:= 0: %p A358393 while count < 40 do %p A358393 p:= q; q:= r; r:= nextprime(r); %p A358393 s:= p*(q+r)+q*r; %p A358393 if isprime(s-2*p*q) and isprime(s-2*p*r) and isprime(s-2*q*r) then R:= R, p; count:= count+1; %p A358393 fi %p A358393 od: %p A358393 R; %t A358393 f[p_, q_, r_] := PrimeQ[p*q + p*r - q*r] && PrimeQ[p*q - p*r + q*r] && PrimeQ[-p*q + p*r + q*r]; Select[Partition[Prime[Range[10^6]], 3, 1], f @@ # &][[;; , 1]] (* _Amiram Eldar_, Nov 13 2022 *) %o A358393 (Python) %o A358393 from itertools import islice %o A358393 from sympy import isprime, nextprime %o A358393 def agen(): %o A358393 p, q, r = 2, 3, 5 %o A358393 while True: %o A358393 pq, pr, qr = p*q, p*r, q*r %o A358393 if all(isprime(t) for t in [pq+pr-qr, pq-pr+qr, -pq+pr+qr]): yield p %o A358393 p, q, r = q, r, nextprime(r) %o A358393 print(list(islice(agen(), 15))) # _Michael S. Branicky_, Nov 13 2022 %Y A358393 Contained in A054643. %K A358393 nonn %O A358393 1,1 %A A358393 _J. M. Bergot_ and _Robert Israel_, Nov 13 2022