This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358446 #26 Nov 17 2022 07:59:57 %S A358446 1,1,4,9,56,190,1704,7644,93120,516240,8136000,53523360,1047548160, %T A358446 7961241600,187132377600,1611967392000,44311886438400,426483893606400, %U A358446 13428757601280000,142790947407360000,5066854992138240000,58981696577556480000,2328441680297779200000 %N A358446 a(n) = n! * Sum_{k=0..floor(n/2)} 1/binomial(n-k, k). %H A358446 Seiichi Manyama, <a href="/A358446/b358446.txt">Table of n, a(n) for n = 0..449</a> %F A358446 E.g.f.: (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2. %F A358446 a(n) ~ n! * (3 + (-1)^n)/2. - _Vaclav Kotesovec_, Nov 17 2022 %F A358446 a(n) = Sum_{k=0..floor(n/2)} A143216(n, k)/A344391(n, k). - _Peter Luschny_, Nov 17 2022 %p A358446 egf := (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2: %p A358446 ser := series(egf, x, 22): seq(n!*coeff(ser, x, n), n = 0..20); # _Peter Luschny_, Nov 17 2022 %o A358446 (Maxima) %o A358446 a(n):=factorial(n)*sum(1/binomial(n-k,k),k,0,floor(n/2)); %o A358446 (SageMath) %o A358446 def A358446(n): %o A358446 return sum(A143216(n, k) // A344391(n, k) for k in range((n+2)//2)) %o A358446 print([A358446(n) for n in range(23)]) # _Peter Luschny_, Nov 17 2022 %Y A358446 Cf. A003149, A143216, A344391. %K A358446 nonn %O A358446 0,3 %A A358446 _Vladimir Kruchinin_, Nov 16 2022