This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358450 #13 Feb 04 2025 22:35:06 %S A358450 7,1,1,9,5,8,6,5,9,7,7,8,2,6,3,8,0,1,5,1,2,4,5,8,5,4,8,8,0,5,3,9,7,7, %T A358450 6,7,7,2,7,7,7,1,1,4,4,1,0,7,9,8,5,8,0,2,2,7,6,5,7,3,3,7,5,4,2,7,1,9, %U A358450 2,6,8,6,4,6,3,2,4,9,2,8,9,6,9,7,2,0 %N A358450 Decimal expansion of 2*EllipticK(i) - EllipticE(i), reciprocal of A088375. %F A358450 Equals (a/b - b/a)*b^(1/2), where a = sqrt(2)*Gamma(5/4)^2 and b = Pi/4. %F A358450 Equals sqrt(2) * (EllipticK(sqrt(2)/2) - EllipticE(sqrt(2)/2)). %F A358450 Equals Integral_{x=0..Pi/2} cos(x)^2 / sqrt(1 + sin(x)^2). %e A358450 0.7119586597782638015124585488053977677277711441... %p A358450 Digits := 100: a := sqrt(2)*GAMMA(5/4)^2: b := Pi/4: evalf((a/b - b/a)*b^(1/2), Digits)*10^90: ListTools:-Reverse(convert(floor(%), base, 10)); %t A358450 With[{a = Sqrt[2]*Gamma[5/4]^2, b = Pi/4}, RealDigits[(a/b - b/a)*b^(1/2), 10, 120][[1]]] (* _Amiram Eldar_, Nov 19 2022 *) %o A358450 (PARI) 2*ellK(I) - ellE(I) \\ _Charles R Greathouse IV_, Feb 04 2025 %Y A358450 Cf. A088375. %K A358450 nonn,cons %O A358450 0,1 %A A358450 _Peter Luschny_, Nov 19 2022