This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358451 #9 Jun 15 2024 05:55:57 %S A358451 1,0,1,1,2,5,11,28,68,174,445,1166,3068,8190,21994,59585,162360, %T A358451 445145,1226376,3394654,9434260,26317865,73661588,206809307,582255448, %U A358451 1643536725,4650250254,13186484316,37468566744,106666821221,304200399505,868977304140,2486163857424 %N A358451 Inverse Euler transform of the Riordan numbers, (A005043). %H A358451 OEIS Wiki, <a href="https://oeis.org/wiki/Euler_transform">Euler transform</a> %F A358451 a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Jun 15 2024 %p A358451 EulerInvTransform := proc(f) local c, b; %p A358451 c := proc(n) option remember; %p A358451 ifelse(n = 0, f(0), f(n) - b(n, n-1)) end: %p A358451 b := proc(n, k) option remember; %p A358451 if n = 0 then return 1 elif k < 1 then return 0 fi; %p A358451 add(binomial(c(k) + j - 1, j)*b(n-k*j, k-1), j=0..n/k) end: %p A358451 c end: %p A358451 a := EulerInvTransform(A005043): seq(a(n), n = 0..32); %t A358451 EulerInvTransform[seq_List] := Module[{final = {}}, Do[AppendTo[final, i*seq[[i]] - Sum[final[[d]]*seq[[i-d]], {d, i-1}]], {i, Length[seq]}]; Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq] }]]; %t A358451 A005043[n_] := A005043[n] = If[n <= 1, 1-n, (n-1)*(2*A005043[n-1] + 3*A005043[n-2])/(n+1)]; %t A358451 Join[{1}, EulerInvTransform[Array[A005043, 32]]] (* _Jean-François Alcover_, Jun 15 2024 *) %o A358451 (SageMath) %o A358451 z = PowerSeriesRing(ZZ, 'z').gen().O(33) %o A358451 g = 1 + z + sqrt(1 - 2*z - 3*z**2) %o A358451 f = -z * g.derivative() / g %o A358451 print([1] + [sum(moebius(n // d) * f[d] %o A358451 for d in divisors(n)) // n for n in range(1, 33)]) %o A358451 (Python) %o A358451 from typing import Callable %o A358451 from functools import cache %o A358451 from math import comb %o A358451 # Define 'binomial' for compatibility with Maple. %o A358451 def binomial(n: int, k: int) -> int: %o A358451 if 0 <= k <= n: return comb(n, k) %o A358451 if k <= n < 0: return comb(-k-1, n-k)*(-1)**(n-k) %o A358451 if n < 0 <= k: return comb(-n+k-1, k)*(-1)**k %o A358451 return 0 %o A358451 def EulerInvTransform(f: Callable) -> Callable: %o A358451 @cache %o A358451 def h(n: int, k: int) -> int: %o A358451 if n == 0: return 1 %o A358451 if k < 1: return 0 %o A358451 return sum(binomial(b(k)+j-1, j) * h(n-k*j, k-1) %o A358451 for j in range(1 + n // k)) %o A358451 @cache %o A358451 def b(n: int) -> int: %o A358451 if n == 0: return f(0) %o A358451 return f(n) - h(n, n - 1) %o A358451 return b %o A358451 a = EulerInvTransform(A005043) %o A358451 print([a(n) for n in range(33)]) %Y A358451 Cf. A005043. %K A358451 nonn %O A358451 0,5 %A A358451 _Peter Luschny_, Nov 20 2022