This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358454 #5 Nov 18 2022 21:53:11 %S A358454 1,1,1,3,6,13,33,80,201,509,1330,3432,8982,23559,62189 %N A358454 Number of weakly transitive ordered rooted trees with n nodes. %C A358454 We define an unlabeled ordered rooted tree to be weakly transitive if every branch of a branch of the root is itself a branch of the root. %e A358454 The a(1) = 1 through a(6) = 13 trees: %e A358454 o (o) (oo) (ooo) (oooo) (ooooo) %e A358454 ((o)o) ((o)oo) ((o)ooo) %e A358454 (o(o)) ((oo)o) ((oo)oo) %e A358454 (o(o)o) ((ooo)o) %e A358454 (o(oo)) (o(o)oo) %e A358454 (oo(o)) (o(oo)o) %e A358454 (o(ooo)) %e A358454 (oo(o)o) %e A358454 (oo(oo)) %e A358454 (ooo(o)) %e A358454 ((o)(o)o) %e A358454 ((o)o(o)) %e A358454 (o(o)(o)) %t A358454 aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358454 Table[Length[Select[aot[n],Complement[Union@@#,#]=={}&]],{n,10}] %Y A358454 The unordered version is A290689, ranked by A290822. %Y A358454 The directed version is A358453. %Y A358454 A000081 counts rooted trees. %Y A358454 A306844 counts anti-transitive rooted trees. %Y A358454 Cf. A318185, A324695, A324751, A324756, A324758, A324764-A324768, A324838, A324840, A324844, A358456. %K A358454 nonn,more %O A358454 1,4 %A A358454 _Gus Wiseman_, Nov 18 2022