cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358471 a(n) is the number of transitive generalized signotopes.

Original entry on oeis.org

2, 14, 424, 58264, 33398288, 68779723376
Offset: 3

Views

Author

Robert Lauff, Nov 18 2022

Keywords

Comments

A "transitive generalized signotope" is a generalized signotope X (cf. A328377) with the additional property that for any 5-tuple p, q, r, s, t, if (X(t,q,r), X(p,t,r), X(p,q,t), X(s,q,t), X(p,s,t), X(p,q,s)) = (+,+,+,+,+,+), then X(s,q,r)=+. Here X is extended to non-ordered triples by X(p(a),p(b),p(c)) = sgn(p)X(a,b,c) for any permutation p of three elements.
The "transitivity property" from the definition has a nice interpretation in the context of point sets, see "transitive interior triple systems" in Knuth.
The condition of transitivity from the definition above is implication (2.4a) in Knuth.
Every signotope (cf. A006247) is a transitive generalized signotope, giving a lower bound of 2^(c*n^2) <= a(n). This can be seen by checking the n=5 case. A violating 5-tuple in any signotope then cannot occur because it induces a signotope on 5 elements.

References

  • D. Knuth, Axioms and Hulls, Springer, 1992, 9-11.

Crossrefs