cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358483 Numbers k such that k, k+1 and k+2 are all infinitary abundant numbers (A129656).

This page as a plain text file.
%I A358483 #11 Nov 19 2022 04:33:26
%S A358483 2666847104,2695309694,8207456894,8967010688,12147283070,12491149670,
%T A358483 13911605630,14126720894,17238119624,17238704768,18420223094,
%U A358483 20922243110,21786026624,25118874494,26079705728,26979164288,27257009624,30000503168,30478990904,30832299134,32892108248
%N A358483 Numbers k such that k, k+1 and k+2 are all infinitary abundant numbers (A129656).
%H A358483 Amiram Eldar, <a href="/A358483/b358483.txt">Table of n, a(n) for n = 1..456</a> (terms below 10^12)
%e A358483 2666847104 is in the sequence since 2666847104, 2666847105 and 2666847106 are all infinitary abundant numbers (A129656): isigma(2666847104) = 5401952640 > 2 * 2666847104, isigma(2666847105) = 5374656000 > 2 * 2666847105, and isigma(2666847106) = 5419376640 > 2 * 2666847106 (isigma is the sum of infinitary divisors, A049417).
%t A358483 f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], _?(# == 1 &)])); isigma[1] = 1; isigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); abQ[n_] := isigma[n] > 2*n; v = Cases[Import["https://oeis.org/A096536/b096536.txt", "Table"], {_, _}][[;; , 2]]; Select[v, And @@ abQ /@ (# + {0, 1, 2}) &]
%Y A358483 Subsequence of A096536, A129656 and A327635.
%Y A358483 Cf. A049417.
%K A358483 nonn
%O A358483 1,1
%A A358483 _Amiram Eldar_, Nov 18 2022