cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358484 Numbers k such that k, k+1 and k+2 are all bi-unitary abundant numbers (A292982).

This page as a plain text file.
%I A358484 #10 Nov 19 2022 04:47:49
%S A358484 268005374,600350750,2666847104,2683146464,2695309694,2849458688,
%T A358484 3904592768,4112553248,5368737374,6554410784,6955574624,8207456894,
%U A358484 8967010688,9220179968,9868366430,10529171288,12147283070,12411630944,12491149670,13911605630,14126720894,14396391008
%N A358484 Numbers k such that k, k+1 and k+2 are all bi-unitary abundant numbers (A292982).
%H A358484 Amiram Eldar, <a href="/A358484/b358484.txt">Table of n, a(n) for n = 1..1546</a> (terms below 10^12)
%e A358484 268005374 is in the sequence since 268005374, 268005375 and 268005376 are all bi-unitary abundant numbers (A292982): bsigma(268005374) = 568995840 > 2 * 268005374, bsigma(268005375) = 540633600 > 2 * 268005375, and bsigma(268005376) = 541258200 > 2 * 268005376 (bsigma is the sum of bi-unitary divisors, A188999).
%t A358484 f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; abQ[n_] := bsigma[n] > 2*n; v = Cases[Import["https://oeis.org/A096536/b096536.txt", "Table"], {_, _}][[;; , 2]]; Select[v, And @@ abQ /@ (# + {0, 1, 2}) &]
%Y A358484 Subsequence of A096536, A292982 and A318167.
%Y A358484 Cf. A188999.
%K A358484 nonn
%O A358484 1,1
%A A358484 _Amiram Eldar_, Nov 18 2022