cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358491 a(n) = n!*Sum_{m=0..floor((n-1)/2)} 1/(n-m)/binomial(n-m-1,m).

This page as a plain text file.
%I A358491 #26 Nov 19 2022 20:17:45
%S A358491 1,1,5,10,74,216,2316,8688,128880,581760,11406240,59667840,1482693120,
%T A358491 8782905600,266800262400,1762116249600,63536485017600,462613126348800,
%U A358491 19342202181120000,153884245616640000,7325057766297600000
%N A358491 a(n) = n!*Sum_{m=0..floor((n-1)/2)} 1/(n-m)/binomial(n-m-1,m).
%F A358491 E.g.f.: log((x-1)^2*(x+1))/(x^2-x-1).
%F A358491 a(n) = n!*Sum_{i=1..n} (F(i)/(n-i+1))*(2*(-1)^(i+1)+(-1)^n), F(n) - Fibonacci numbers.
%o A358491 (Maxima)
%o A358491 a(n):=n!*sum(1/(n-m)/(binomial(n-m-1,m)),m,0,floor((n-1)/2));
%o A358491 a(n):=n!*sum((fib(i))/(n-i+1)*(2*(-1)^(i+1)+(-1)^(n)),i,1,n);
%Y A358491 Cf. A000045, A358446
%K A358491 nonn
%O A358491 1,3
%A A358491 _Vladimir Kruchinin_, Nov 19 2022