This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358492 #32 Dec 15 2022 13:43:56 %S A358492 1,1,1,1,2,1,1,2,1,2,2,1,1,1,3,1,1,3,2,1,1,1,3,2,1,1,1,3,3,1,1,1,1,4, %T A358492 2,1,1,1,4,2,2,1,1,1,1,1,3,4,1,1,1,1,3,4,2,1,1,1,1,2,4,2,2,1,1,1,1,1, %U A358492 3,5,2,1,1,1,1,1,1,3,5,2,1,1,1,1,1,3,5,2,2,1,1,1,1,1,1,1,5,4,2,1,1,1,1,1,1,5,4,2,2 %N A358492 Irregular triangle read by rows: T(n,k) is one half of the number of line segments of length 1 in the k-th antidiagonal of the Dyck path described in the n-th row of A237593. %e A358492 Triangle begins (first 19 rows): %e A358492 1; %e A358492 1, 1; %e A358492 1, 2; %e A358492 1, 1, 2; %e A358492 1, 2, 2; %e A358492 1, 1, 1, 3; %e A358492 1, 1, 3, 2; %e A358492 1, 1, 1, 3, 2; %e A358492 1, 1, 1, 3, 3; %e A358492 1, 1, 1, 1, 4, 2; %e A358492 1, 1, 1, 4, 2, 2; %e A358492 1, 1, 1, 1, 1, 3, 4; %e A358492 1, 1, 1, 1, 3, 4, 2; %e A358492 1, 1, 1, 1, 2, 4, 2, 2; %e A358492 1, 1, 1, 1, 1, 3, 5, 2; %e A358492 1, 1, 1, 1, 1, 1, 3, 5, 2; %e A358492 1, 1, 1, 1, 1, 3, 5, 2, 2; %e A358492 1, 1, 1, 1, 1, 1, 1, 5, 4, 2; %e A358492 1, 1, 1, 1, 1, 1, 5, 4, 2, 2; %e A358492 ... %e A358492 For n = 10 the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6]. When that row is interpreted as a symmetric Dyck path in the fourth quadrant using 20 line segments of length 1 the Dyck path looks like this: %e A358492 . %e A358492 | %e A358492 | %e A358492 | %e A358492 | %e A358492 | %e A358492 _ _| %e A358492 _| %e A358492 _| %e A358492 | %e A358492 _ _ _ _ _ _| %e A358492 . %e A358492 The numbers of line segments of length 1 in the successive antidiagonals are respectively [2, 2, 2, 2, 8, 4] so the 10th row of triangle is [1, 1, 1, 1, 4, 2]. %Y A358492 Row sums give A000027. %Y A358492 Row n has length A008619(n). %Y A358492 Column 1 gives A000012. %Y A358492 Cf. A196020, A235791, A236104, A237270, A237271, A237591, A237593, A245092, A262626, A339575. %K A358492 nonn,tabf %O A358492 1,5 %A A358492 _Omar E. Pol_, Nov 19 2022