This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358507 #7 Nov 21 2022 09:47:56 %S A358507 1,6,12,24,30,48,60,72,104,120,144,148,156,180,192,222,288,312,360, %T A358507 390,432,444,480,576,712,720,780,832,864,900,1080,1110,1248,1260,1296, %U A358507 1440,1560,1680,2136,2160,2262,2304,2340,2496,2520,2592,2738,2880,2886,3072 %N A358507 Sorted list of positions of first appearances in the sequence counting permutations of Matula-Goebel trees (A206487). %C A358507 To get a permutation of a tree, we choose a permutation of the multiset of branches of each node. %C A358507 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %e A358507 The terms together with their corresponding trees begin: %e A358507 1: o %e A358507 6: (o(o)) %e A358507 12: (oo(o)) %e A358507 24: (ooo(o)) %e A358507 30: (o(o)((o))) %e A358507 48: (oooo(o)) %e A358507 60: (oo(o)((o))) %e A358507 72: (ooo(o)(o)) %e A358507 104: (ooo(o(o))) %e A358507 120: (ooo(o)((o))) %e A358507 144: (oooo(o)(o)) %e A358507 148: (oo(oo(o))) %e A358507 156: (oo(o)(o(o))) %e A358507 180: (oo(o)(o)((o))) %e A358507 192: (oooooo(o)) %e A358507 222: (o(o)(oo(o))) %e A358507 288: (ooooo(o)(o)) %e A358507 312: (ooo(o)(o(o))) %t A358507 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]] %t A358507 MGTree[n_Integer]:=If[n===1,{},MGTree/@primeMS[n]] %t A358507 treeperms[t_]:=Times@@Cases[t,b:{__}:>Length[Permutations[b]],{0,Infinity}]; %t A358507 fir[q_]:=Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]; %t A358507 fir[Table[treeperms[MGTree[n]],{n,100}]] %Y A358507 Positions of first appearances in A206487. %Y A358507 The unsorted version is A358508. %Y A358507 A000081 counts rooted trees, ordered A000108. %Y A358507 A214577 and A358377 rank trees with no permutations. %Y A358507 Cf. A001263, A032027, A061775, A127301, A196050, A358378, A358506, A358521, A358522. %K A358507 nonn %O A358507 1,2 %A A358507 _Gus Wiseman_, Nov 20 2022