This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358508 #6 Nov 21 2022 09:48:02 %S A358508 1,6,12,24,48,30,192,104,148,72,3072,60,12288,832,144,712,196608,222, %T A358508 786432,120,288,13312 %N A358508 Least Matula-Goebel number of a tree with exactly n permutations. %C A358508 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %C A358508 To get a permutation of a tree, we choose a permutation of the multiset of branches of each node. %e A358508 The terms together with their corresponding trees begin: %e A358508 1: o %e A358508 6: (o(o)) %e A358508 12: (oo(o)) %e A358508 24: (ooo(o)) %e A358508 48: (oooo(o)) %e A358508 30: (o(o)((o))) %e A358508 192: (oooooo(o)) %e A358508 104: (ooo(o(o))) %e A358508 148: (oo(oo(o))) %e A358508 72: (ooo(o)(o)) %e A358508 3072: (oooooooooo(o)) %e A358508 60: (oo(o)((o))) %e A358508 12288: (oooooooooooo(o)) %e A358508 832: (oooooo(o(o))) %e A358508 144: (oooo(o)(o)) %e A358508 712: (ooo(ooo(o))) %t A358508 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]] %t A358508 MGTree[n_Integer]:=If[n===1,{},MGTree/@primeMS[n]] %t A358508 treeperms[t_]:=Times @@ Cases[t,b:{__}:>Length[Permutations[b]],{0,Infinity}]; %t A358508 uv=Table[treeperms[MGTree[n]],{n,100000}]; %t A358508 Table[Position[uv,k][[1,1]],{k,Min@@Complement[Range[Max@@uv],uv]-1}] %Y A358508 Position of first appearance of n in A206487. %Y A358508 The sorted version is A358507. %Y A358508 A000081 counts rooted trees, ordered A000108. %Y A358508 A214577 and A358377 rank trees with no permutations. %Y A358508 Cf. A001263, A032027, A061775, A127301, A196050, A358378, A358506, A358521, A358522. %K A358508 nonn,more %O A358508 1,2 %A A358508 _Gus Wiseman_, Nov 20 2022