cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A358516 Decimal expansion of Sum_{k >= 1} (-1)^(k+1)*1/((k+2)*(k+3)).

Original entry on oeis.org

0, 5, 2, 9, 6, 1, 0, 2, 7, 7, 8, 6, 5, 5, 7, 2, 8, 5, 5, 0, 1, 1, 3, 0, 9, 0, 9, 5, 8, 3, 0, 1, 9, 8, 0, 2, 8, 1, 7, 6, 6, 6, 9, 3, 5, 3, 8, 7, 1, 7, 7, 1, 7, 4, 9, 0, 8, 0, 2, 6, 6, 8, 5, 6, 5, 3, 4, 5, 3, 9, 1, 0, 6, 0, 6, 0, 5, 6, 0, 9, 7, 8, 7, 8, 3, 9, 3, 3, 2, 0, 6, 5, 9, 5, 0, 4
Offset: 0

Views

Author

Claude H. R. Dequatre, Nov 20 2022

Keywords

Examples

			0.0529610277865572855011309095830198028176669353...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[2*Log[2] - 4/3, 10, 120][[1]]] (* Amiram Eldar, Nov 21 2022 *)
  • PARI
    2*log(2) - 4/3

Formula

Equals Sum_{k >= 1} (-1)^(k+1)*/((k+2)*(k+3)) = A016627 -4/3.
Equals 2*log(2) - 4/3 = Sum_{k >= 2} 1/(4*k^3 - k) = Sum_{k >= 1} (zeta(2*k + 1) - 1)/(4^k). [from the Shamos reference]
Equals Sum_{k >= 1} 1/((2^k)*(4*k + 12)). [from the Shamos reference]
Equals Sum_{k>=3} (-1)^(k+1)/A002378(k). - Amiram Eldar, Nov 21 2022

Extensions

Missing terms 6, 0 inserted after a(74) by Georg Fischer, Feb 07 2025

A358519 Decimal expansion of Sum_{k >= 1} (-1)^(k+1)/(k^2 + 4*k - 1).

Original entry on oeis.org

1, 8, 9, 9, 5, 7, 9, 0, 7, 7, 1, 8, 0, 6, 2, 7, 2, 5, 2, 7, 1, 9, 0, 8, 4, 0, 9, 0, 6, 3, 6, 3, 6, 6, 5, 5, 2, 7, 9, 5, 6, 6, 4, 9, 1, 4, 5, 4, 0, 6, 7, 9, 5, 6, 3, 1, 3, 2, 8, 9, 3, 1, 3, 6, 2, 2, 1, 3, 1, 4, 6, 7, 1, 4, 9, 3, 6, 1, 9, 8, 5, 9, 8, 5, 3, 2, 5, 6, 4, 7, 7, 5, 6, 1, 3
Offset: 0

Views

Author

Claude H. R. Dequatre, Nov 20 2022

Keywords

Examples

			0.189957907718062725271908409063636655279566491...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Sqrt[5]*Pi*Csc[Sqrt[5]*Pi] - 17)/20, 10, 120][[1]] (* Amiram Eldar, Nov 21 2022 *)
  • PARI
    (Pi/(2*sqrt(5)))*1/sin(Pi*sqrt(5)) - 17/20

Formula

Equals Sum_{k >=1} (-1)^(k+1)/(k^2 + 4*k - 1).
Equals (Pi/(2*sqrt(5)))*csc(Pi*sqrt(5)) - 17/20 = Sum_{k>=3} (-1)^(k+1)/(k^2-5). [from the Shamos reference]
Equals Sum_{k>=3} (-1)^(k+1)/A028875(k). - Amiram Eldar, Nov 21 2022

A365524 Decimal expansion of 4*log(2) - 5/2.

Original entry on oeis.org

2, 7, 2, 5, 8, 8, 7, 2, 2, 2, 3, 9, 7, 8, 1, 2, 3, 7, 6, 6, 8, 9, 2, 8, 4, 8, 5, 8, 3, 2, 7, 0, 6, 2, 7, 2, 3, 0, 2, 0, 0, 0, 5, 3, 7, 4, 4, 1, 0, 2, 1, 0, 1, 6, 4, 8, 2, 7, 2, 0, 0, 3, 7, 9, 7, 3, 5, 7, 4, 4, 8, 7, 8, 7, 8, 7, 7, 8, 8, 6, 2, 4, 2, 3, 4, 5, 3, 3, 0, 7, 9, 8, 5, 6, 7, 4, 7, 5, 0, 1, 6, 8, 0, 0, 5, 9, 2, 4, 0, 8
Offset: 0

Views

Author

Claude H. R. Dequatre, Sep 08 2023

Keywords

Comments

This sequence is also the decimal expansion of Sum_{k>=1} (-1)^(k+1)*f(k), where f(k) = (3*k^2 - k)/(k^2 + k) is the ratio between the k-th pentagonal and triangular numbers.

Examples

			0.27258872223978123766892848583270627230200053744102...
		

Crossrefs

Cf. A002162.
Essentially the same as A016639 and A358517.

Programs

  • Mathematica
    RealDigits[4*Log[2] - 5/2, 10 , 100][[1]] (* Amiram Eldar, Sep 08 2023 *)
  • PARI
    4*log(2)-5/2

Formula

Equals Sum_{k>=1} 1/(2^k*(k + 2)) [Shamos].
Equals Sum_{k>=1} (-1)^(k+1)*(3*k^2 - k)/(k^2 + k).

A369882 Decimal expansion of log(2) - 1/4.

Original entry on oeis.org

4, 4, 3, 1, 4, 7, 1, 8, 0, 5, 5, 9, 9, 4, 5, 3, 0, 9, 4, 1, 7, 2, 3, 2, 1, 2, 1, 4, 5, 8, 1, 7, 6, 5, 6, 8, 0, 7, 5, 5, 0, 0, 1, 3, 4, 3, 6, 0, 2, 5, 5, 2, 5, 4, 1, 2, 0, 6, 8, 0, 0, 0, 9, 4, 9, 3, 3, 9, 3, 6, 2, 1, 9, 6, 9, 6, 9, 4, 7, 1, 5, 6, 0, 5, 8, 6, 3, 3, 2, 6, 9, 9, 6, 4, 1, 8, 6, 8, 7, 5, 4, 2, 0, 0, 1, 4
Offset: 0

Views

Author

Claude H. R. Dequatre, Feb 04 2024

Keywords

Examples

			0.443147180559945309417232121458176568075500134...
		

Crossrefs

Essentially the same as A002162 and A187832.

Programs

  • Mathematica
    RealDigits[Log[2] - 1/4, 10, 120][[1]] (* Amiram Eldar, Feb 04 2024 *)
  • PARI
    log(2)-1/4

Formula

Equals Sum_{k >= 2} (-1)^k*k/(k^2 - 1) [Shamos].
Equals Sum_{k >= 1} (-1)^(k+1)*(k + 1)/(k*(k + 2)).
Showing 1-4 of 4 results.