This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358521 #7 Nov 20 2022 18:30:21 %S A358521 1,2,3,4,5,6,8,9,10,11,12,16,17,18,19,20,22,24,32,33,34,35,36,37,38, %T A358521 40,43,44,48,64,66,67,68,69,70,72,74,75,76,80,86,88,96,128,129,131, %U A358521 132,133,134,136,137,138,139,140,144,147,148,150,152,160,171,172 %N A358521 Sorted list of positions of first appearances in the sequence of Matula-Goebel numbers of standard ordered trees (A358506). %C A358521 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %C A358521 We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees. %H A358521 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A358521 The terms together with their standard ordered trees begin: %e A358521 1: o %e A358521 2: (o) %e A358521 3: ((o)) %e A358521 4: (oo) %e A358521 5: (((o))) %e A358521 6: ((o)o) %e A358521 8: (ooo) %e A358521 9: ((oo)) %e A358521 10: (((o))o) %e A358521 11: ((o)(o)) %e A358521 12: ((o)oo) %e A358521 16: (oooo) %e A358521 17: ((((o)))) %e A358521 18: ((oo)o) %e A358521 19: (((o))(o)) %e A358521 20: (((o))oo) %t A358521 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358521 srt[n_]:=If[n==1,{},srt/@stc[n-1]]; %t A358521 mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t]; %t A358521 fir[q_]:=Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]; %t A358521 fir[Table[mgnum[srt[n]],{n,100}]] %Y A358521 Positions of first appearances in A358506. %Y A358521 The unsorted version is A358522. %Y A358521 A000108 counts ordered rooted trees, unordered A000081. %Y A358521 A214577 and A358377 rank trees with no permutations. %Y A358521 Cf. A001263, A014486, A061775, A127301, A196050, A206487, A358371, A358372, A358378, A358379, A358505. %K A358521 nonn %O A358521 1,2 %A A358521 _Gus Wiseman_, Nov 20 2022