This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358522 #6 Nov 20 2022 18:30:16 %S A358522 1,2,3,4,5,6,9,8,11,10,17,12,33,18,19,16,257,22,129,20,35,34,1025,24, %T A358522 37,66,43,36,513,38,65537,32,67,514,69,44,2049,258,131,40 %N A358522 Least number k such that the k-th standard ordered tree has Matula-Goebel number n, i.e., A358506(k) = n. %C A358522 We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees. %C A358522 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %H A358522 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A358522 The terms together with their standard ordered trees begin: %e A358522 1: o %e A358522 2: (o) %e A358522 3: ((o)) %e A358522 4: (oo) %e A358522 5: (((o))) %e A358522 6: ((o)o) %e A358522 9: ((oo)) %e A358522 8: (ooo) %e A358522 11: ((o)(o)) %e A358522 10: (((o))o) %e A358522 17: ((((o)))) %e A358522 12: ((o)oo) %e A358522 33: (((o)o)) %e A358522 18: ((oo)o) %e A358522 19: (((o))(o)) %e A358522 16: (oooo) %e A358522 257: (((oo))) %e A358522 22: ((o)(o)o) %e A358522 129: ((ooo)) %e A358522 20: (((o))oo) %e A358522 35: ((oo)(o)) %e A358522 34: ((((o)))o) %t A358522 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358522 srt[n_]:=If[n==1,{},srt/@stc[n-1]]; %t A358522 mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t]; %t A358522 uv=Table[mgnum[srt[n]],{n,10000}]; %t A358522 Table[Position[uv,k][[1,1]],{k,Min@@Complement[Range[Max@@uv],uv]-1}] %Y A358522 Position of first appearance of n in A358506. %Y A358522 The sorted version is A358521. %Y A358522 A000108 counts ordered rooted trees, unordered A000081. %Y A358522 A214577 and A358377 rank trees with no permutations. %Y A358522 Cf. A001263, A014486, A061775, A127301, A196050, A206487, A358371, A358372, A358378, A358379, A358505. %K A358522 nonn,more %O A358522 1,2 %A A358522 _Gus Wiseman_, Nov 20 2022