This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358524 #6 Nov 21 2022 22:01:53 %S A358524 0,2,10,12,42,52,56,170,204,212,232,240,682,820,844,852,920,936,976, %T A358524 992,2730,3276,3284,3380,3404,3412,3640,3688,3736,3752,3888,3920,4000, %U A358524 4032,10922,13108,13132,13140,13516,13524,13620,13644,13652,14568,14744,14760 %N A358524 Binary encoding of balanced ordered rooted trees (counted by A007059). %C A358524 An ordered tree is balanced if all leaves are the same distance from the root. %C A358524 The binary encoding of an ordered tree (see A014486) is obtained by replacing the internal left and right brackets with 0's and 1's, thus forming a binary number. %e A358524 The terms together with their corresponding trees begin: %e A358524 0: o %e A358524 2: (o) %e A358524 10: (oo) %e A358524 12: ((o)) %e A358524 42: (ooo) %e A358524 52: ((oo)) %e A358524 56: (((o))) %e A358524 170: (oooo) %e A358524 204: ((o)(o)) %e A358524 212: ((ooo)) %e A358524 232: (((oo))) %e A358524 240: ((((o)))) %e A358524 682: (ooooo) %e A358524 820: ((o)(oo)) %e A358524 844: ((oo)(o)) %e A358524 852: ((oooo)) %e A358524 920: (((o)(o))) %e A358524 936: (((ooo))) %e A358524 976: ((((oo)))) %e A358524 992: (((((o))))) %t A358524 binbalQ[n_]:=n==0||Count[IntegerDigits[n,2],0]==Count[IntegerDigits[n,2],1]&&And@@Table[Count[Take[IntegerDigits[n,2],k],0]<=Count[Take[IntegerDigits[n,2],k],1],{k,IntegerLength[n,2]}]; %t A358524 bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]] %t A358524 Select[Range[0,1000],binbalQ[#]&&SameQ@@Length/@Position[bint[#],{}]&] %Y A358524 These trees are counted by A007059. %Y A358524 This is a subset of A014486. %Y A358524 The version for binary trees is A057122. %Y A358524 The unordered version is A184155, counted by A048816. %Y A358524 Another ranking of balanced ordered trees is A358459. %Y A358524 A000108 counts ordered rooted trees, unordered A000081. %Y A358524 A358453 counts transitive ordered trees, unordered A290689. %Y A358524 Cf. A001263, A003238, A244925, A358377, A358379, A358523. %K A358524 nonn %O A358524 1,2 %A A358524 _Gus Wiseman_, Nov 21 2022