This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358526 #7 Nov 21 2022 22:01:45 %S A358526 1,6,12,24,30,48,60,72,120,144,180,192,210,288,360,384,432,480,576, %T A358526 720,768,840,864,900,1080,1152,1260,1296,1440,1680,1728,1920,2160, %U A358526 2304,2520,2592,2880,3072,3360,4320,4608,4620,5040,5400,6300,6912,7200,7560,7680 %N A358526 Numbers k whose prime indices have a different number of permutations than any number less than k. %C A358526 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A358526 Permutations of prime indices are counted by A008480. %e A358526 The terms together with their prime indices begin: %e A358526 1: {} %e A358526 6: {1,2} %e A358526 12: {1,1,2} %e A358526 24: {1,1,1,2} %e A358526 30: {1,2,3} %e A358526 48: {1,1,1,1,2} %e A358526 60: {1,1,2,3} %e A358526 72: {1,1,1,2,2} %e A358526 120: {1,1,1,2,3} %e A358526 144: {1,1,1,1,2,2} %e A358526 180: {1,1,2,2,3} %e A358526 192: {1,1,1,1,1,1,2} %e A358526 210: {1,2,3,4} %e A358526 288: {1,1,1,1,1,2,2} %e A358526 360: {1,1,1,2,2,3} %e A358526 384: {1,1,1,1,1,1,1,2} %e A358526 432: {1,1,1,1,2,2,2} %e A358526 480: {1,1,1,1,1,2,3} %t A358526 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A358526 fir[q_]:=Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]; %t A358526 fir[Table[Length[Permutations[primeMS[n]]],{n,1000}]] %Y A358526 Sorted list of positions of first appearances in A008480. %Y A358526 The unsorted version is A304938. %Y A358526 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A358526 A289509 lists numbers with relatively prime prime indices. %Y A358526 A344606 counts alternating permutations of prime indices. %Y A358526 Cf. A000040, A000720, A001221, A003963, A061395, A316524. %K A358526 nonn %O A358526 1,2 %A A358526 _Gus Wiseman_, Nov 21 2022