This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358542 #31 Feb 16 2025 08:34:04 %S A358542 1,4,56,20,120,280,560,840,1680,10920,9240,18480,55440,120120,240240, %T A358542 314160,628320,1441440,2282280,7225680,4564560,9129120,13693680, %U A358542 27387360,54774720,68468400,77597520,136936800,155195040,310390080,465585120,775975200,1163962800 %N A358542 a(n) is the smallest number with exactly n divisors that are tetrahedral numbers. %H A358542 Lucas A. Brown, <a href="/A358542/b358542.txt">Table of n, a(n) for n = 1..37</a> %H A358542 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/figuratedivisors.py">Python program</a>. %H A358542 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TetrahedralNumber.html">Tetrahedral Number</a> %H A358542 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a> %e A358542 a(3) = 56 because 56 has 3 tetrahedral divisors {1, 4, 56} and this is the smallest such number. %o A358542 (PARI) istetrah(n) = my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n; \\ A000292 %o A358542 a(n) = my(k=1); while (sumdiv(k, d, istetrah(d)) != n, k++); k; \\ _Michel Marcus_, Nov 21 2022 %Y A358542 Cf. A000292, A005179, A130317, A279495, A358543, A358544. %K A358542 nonn %O A358542 1,2 %A A358542 _Ilya Gutkovskiy_, Nov 21 2022 %E A358542 a(20)-a(22) from _Michel Marcus_, Nov 21 2022 %E A358542 a(23)-a(30) from _Jinyuan Wang_, Nov 28 2022 %E A358542 a(31) from _Martin Ehrenstein_, Dec 02 2022 %E A358542 a(32) and a(33) from _Lucas A. Brown_, Dec 14 2022