A358549 Triangle read by rows where row n is reversed partial sums of row n of the Sierpinski triangle (A047999).
1, 2, 1, 2, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 4, 3, 3, 2, 2, 1, 1, 8, 7, 6, 5, 4, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 2, 2, 2, 2, 2, 1, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 8, 7, 6, 5, 4, 4, 4, 4, 4, 3, 2, 1, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 5 6 7 8 n=0: 1; n=1: 2, 1; n=2: 2, 1, 1; n=3: 4, 3, 2, 1; n=4: 2, 1, 1, 1, 1; n=5: 4, 3, 2, 2, 2, 1; n=6: 4, 3, 3, 2, 2, 1, 1; n=7: 8, 7, 6, 5, 4, 3, 2, 1; n=8: 2, 1, 1, 1, 1, 1, 1, 1, 1; For n=5, row 5 here and row 5 of A047999 are: row 4, 3, 2, 2, 2, 1 sums of 1, 1, 0, 0, 1, 1
Programs
-
Mathematica
row[n_] := Reverse[Accumulate[Array[Boole[0 == BitAnd[n-#, #]] &, n + 1, 0]]]; Array[row, 13, 0] // Flatten (* Amiram Eldar, May 13 2025 *)
Formula
T(n,k) = Sum_{i=k..n} A047999(n,i).
Comments