cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358550 Depth of the ordered rooted tree with binary encoding A014486(n).

This page as a plain text file.
%I A358550 #7 Nov 22 2022 11:57:59
%S A358550 1,2,2,3,2,3,3,3,4,2,3,3,3,4,3,3,3,3,4,4,4,4,5,2,3,3,3,4,3,3,3,3,4,4,
%T A358550 4,4,5,3,3,3,3,4,3,3,3,3,4,4,4,4,5,4,4,4,4,4,4,4,4,5,5,5,5,5,6,2,3,3,
%U A358550 3,4,3,3,3,3,4,4,4,4,5,3,3,3,3,4,3,3,3
%N A358550 Depth of the ordered rooted tree with binary encoding A014486(n).
%C A358550 The binary encoding of an ordered tree (A014486) is obtained by replacing the internal left and right brackets with 0's and 1's, thus forming a binary number.
%e A358550 The first few rooted trees in binary encoding are:
%e A358550     0: o
%e A358550     2: (o)
%e A358550    10: (oo)
%e A358550    12: ((o))
%e A358550    42: (ooo)
%e A358550    44: (o(o))
%e A358550    50: ((o)o)
%e A358550    52: ((oo))
%e A358550    56: (((o)))
%e A358550   170: (oooo)
%e A358550   172: (oo(o))
%e A358550   178: (o(o)o)
%e A358550   180: (o(oo))
%e A358550   184: (o((o)))
%t A358550 binbalQ[n_]:=n==0||Count[IntegerDigits[n,2],0]==Count[IntegerDigits[n,2],1]&&And@@Table[Count[Take[IntegerDigits[n,2],k],0]<=Count[Take[IntegerDigits[n,2],k],1],{k,IntegerLength[n,2]}];
%t A358550 bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
%t A358550 Table[Depth[bint[k]]-1,{k,Select[Range[0,1000],binbalQ]}]
%Y A358550 Positions of first appearances are A014137.
%Y A358550 Leaves of the ordered tree are counted by A057514, standard A358371.
%Y A358550 Branches of the ordered tree are counted by A057515.
%Y A358550 Edges of the ordered tree are counted by A072643.
%Y A358550 The Matula-Goebel number of the ordered tree is A127301.
%Y A358550 Positions of 2's are A155587, indices of A020988.
%Y A358550 The standard ranking of the ordered tree is A358523.
%Y A358550 Nodes of the ordered tree are counted by A358551, standard A358372.
%Y A358550 For standard instead of binary encoding we have A358379.
%Y A358550 A000108 counts ordered rooted trees, unordered A000081.
%Y A358550 A014486 lists all binary encodings.
%Y A358550 Cf. A001263, A057122, A358373, A358505, A358524.
%K A358550 nonn
%O A358550 1,2
%A A358550 _Gus Wiseman_, Nov 22 2022