cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358551 Number of nodes in the ordered rooted tree with binary encoding A014486(n).

This page as a plain text file.
%I A358551 #11 Nov 22 2022 11:57:52
%S A358551 1,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,
%T A358551 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,
%U A358551 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
%N A358551 Number of nodes in the ordered rooted tree with binary encoding A014486(n).
%C A358551 The binary encoding of an ordered tree (A014486) is obtained by replacing the internal left and right brackets with 0's and 1's, thus forming a binary number.
%F A358551 a(n) = A072643(n) + 1.
%e A358551 The first few rooted trees in binary encoding are:
%e A358551     0: o
%e A358551     2: (o)
%e A358551    10: (oo)
%e A358551    12: ((o))
%e A358551    42: (ooo)
%e A358551    44: (o(o))
%e A358551    50: ((o)o)
%e A358551    52: ((oo))
%e A358551    56: (((o)))
%e A358551   170: (oooo)
%e A358551   172: (oo(o))
%e A358551   178: (o(o)o)
%e A358551   180: (o(oo))
%e A358551   184: (o((o)))
%t A358551 binbalQ[n_]:=n==0||Count[IntegerDigits[n,2],0]==Count[IntegerDigits[n,2],1]&&And@@Table[Count[Take[IntegerDigits[n,2],k],0]<=Count[Take[IntegerDigits[n,2],k],1],{k,IntegerLength[n,2]}];
%t A358551 bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
%t A358551 Table[Count[bint[k],_,{0,Infinity}],{k,Select[Range[0,10000],binbalQ]}]
%Y A358551 Run-lengths are A000108.
%Y A358551 Binary encodings are listed by A014486.
%Y A358551 Leaves of the ordered tree are counted by A057514, standard A358371.
%Y A358551 Branches of the ordered tree are counted by A057515.
%Y A358551 Edges of the ordered tree are counted by A072643.
%Y A358551 The Matula-Goebel number of the ordered tree is A127301.
%Y A358551 For standard instead of binary encoding we have A358372.
%Y A358551 The standard ranking of the ordered tree is A358523.
%Y A358551 Depth of the ordered tree is A358550, standard A358379.
%Y A358551 Cf. A000081, A001263, A057122, A358373, A358505, A358524.
%K A358551 nonn
%O A358551 1,2
%A A358551 _Gus Wiseman_, Nov 22 2022