This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358551 #11 Nov 22 2022 11:57:52 %S A358551 1,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6, %T A358551 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7, %U A358551 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 %N A358551 Number of nodes in the ordered rooted tree with binary encoding A014486(n). %C A358551 The binary encoding of an ordered tree (A014486) is obtained by replacing the internal left and right brackets with 0's and 1's, thus forming a binary number. %F A358551 a(n) = A072643(n) + 1. %e A358551 The first few rooted trees in binary encoding are: %e A358551 0: o %e A358551 2: (o) %e A358551 10: (oo) %e A358551 12: ((o)) %e A358551 42: (ooo) %e A358551 44: (o(o)) %e A358551 50: ((o)o) %e A358551 52: ((oo)) %e A358551 56: (((o))) %e A358551 170: (oooo) %e A358551 172: (oo(o)) %e A358551 178: (o(o)o) %e A358551 180: (o(oo)) %e A358551 184: (o((o))) %t A358551 binbalQ[n_]:=n==0||Count[IntegerDigits[n,2],0]==Count[IntegerDigits[n,2],1]&&And@@Table[Count[Take[IntegerDigits[n,2],k],0]<=Count[Take[IntegerDigits[n,2],k],1],{k,IntegerLength[n,2]}]; %t A358551 bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]]; %t A358551 Table[Count[bint[k],_,{0,Infinity}],{k,Select[Range[0,10000],binbalQ]}] %Y A358551 Run-lengths are A000108. %Y A358551 Binary encodings are listed by A014486. %Y A358551 Leaves of the ordered tree are counted by A057514, standard A358371. %Y A358551 Branches of the ordered tree are counted by A057515. %Y A358551 Edges of the ordered tree are counted by A072643. %Y A358551 The Matula-Goebel number of the ordered tree is A127301. %Y A358551 For standard instead of binary encoding we have A358372. %Y A358551 The standard ranking of the ordered tree is A358523. %Y A358551 Depth of the ordered tree is A358550, standard A358379. %Y A358551 Cf. A000081, A001263, A057122, A358373, A358505, A358524. %K A358551 nonn %O A358551 1,2 %A A358551 _Gus Wiseman_, Nov 22 2022