This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358552 #19 Apr 15 2024 02:01:07 %S A358552 1,2,3,2,4,3,3,2,3,4,5,3,4,3,4,2,4,3,3,4,3,5,4,3,4,4,3,3,5,4,6,2,5,4, %T A358552 4,3,4,3,4,4,5,3,4,5,4,4,5,3,3,4,4,4,3,3,5,3,3,5,5,4,4,6,3,2,4,5,4,4, %U A358552 4,4,5,3,4,4,4,3,5,4,6,4,3,5,5,3,4,4,5,5,4,4,4,4,6,5,4,3,5,3,5,4,5,4,4,4,4,3,4,3 %N A358552 Node-height of the rooted tree with Matula-Goebel number n. Number of nodes in the longest path from root to leaf. %C A358552 Edge-height is given by A109082 (see formula). %C A358552 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %H A358552 Antti Karttunen, <a href="/A358552/b358552.txt">Table of n, a(n) for n = 1..100000</a> %F A358552 a(n) = A109082(n) + 1. %F A358552 a(n) = A061775(n) - A358729(n). - _Antti Karttunen_, Oct 23 2023 %e A358552 The Matula-Goebel number of ((ooo(o))) is 89, and it has node-height 4, so a(89) = 4. %t A358552 MGTree[n_]:=If[n==1,{},MGTree/@If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A358552 Table[Depth[MGTree[n]]-1,{n,100}] %o A358552 (PARI) A358552(n) = { my(v=factor(n)[, 1], d=0); while(#v, d++; v=fold(setunion, apply(p->factor(primepi(p))[, 1]~, v))); (1+d); }; \\ (after _Kevin Ryde_ in A109082) - _Antti Karttunen_, Oct 23 2023 %o A358552 (Python) %o A358552 from functools import lru_cache %o A358552 from sympy import isprime, primepi, primefactors %o A358552 @lru_cache(maxsize=None) %o A358552 def A358552(n): %o A358552 if n == 1 : return 1 %o A358552 if isprime(n): return 1+A358552(primepi(n)) %o A358552 return max(A358552(p) for p in primefactors(n)) # _Chai Wah Wu_, Apr 15 2024 %Y A358552 Positions of first appearances are A007097. %Y A358552 This statistic is counted by A034781, ordered A080936. %Y A358552 The ordered version is A358379(n) + 1. %Y A358552 A000081 counts rooted trees, ordered A000108. %Y A358552 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358552 Other statistics: A061775 (nodes), A109082 (edge-height), A109129 (leaves), A196050 (edges), A342507 (internals). %Y A358552 Cf. A000040, A000720, A001222, A056239, A112798. %Y A358552 Cf. A206487, A358576, A358589, A358592, A358729. %K A358552 nonn %O A358552 1,2 %A A358552 _Gus Wiseman_, Nov 26 2022 %E A358552 Data section extended up to a(108) by _Antti Karttunen_, Oct 23 2023