This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358554 #5 Nov 27 2022 08:56:00 %S A358554 1,2,3,5,11,25,55,121,275,605,1331,3025,6655,14641,33275,73205 %N A358554 Least Matula-Goebel number of a rooted tree with n internal (non-leaf) nodes. %C A358554 Positions of first appearances in A342507. %C A358554 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %e A358554 The terms together with their corresponding rooted trees begin: %e A358554 1: o %e A358554 2: (o) %e A358554 3: ((o)) %e A358554 5: (((o))) %e A358554 11: ((((o)))) %e A358554 25: (((o))((o))) %e A358554 55: (((o))(((o)))) %e A358554 121: ((((o)))(((o)))) %e A358554 275: (((o))((o))(((o)))) %e A358554 605: (((o))(((o)))(((o)))) %e A358554 1331: ((((o)))(((o)))(((o)))) %e A358554 3025: (((o))((o))(((o)))(((o)))) %e A358554 6655: (((o))(((o)))(((o)))(((o)))) %e A358554 14641: ((((o)))(((o)))(((o)))(((o)))) %e A358554 33275: (((o))((o))(((o)))(((o)))(((o)))) %e A358554 73205: (((o))(((o)))(((o)))(((o)))(((o)))) %t A358554 MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A358554 seq=Table[Count[MGTree[n],_[__],{0,Infinity}],{n,1000}]; %t A358554 Table[Position[seq,n][[1,1]],{n,Union[seq]}] %Y A358554 For height instead of internals we have A007097, firsts of A109082. %Y A358554 For leaves instead of internals we have A151821, firsts of A109129. %Y A358554 Positions of first appearances in A342507. %Y A358554 The ordered version gives firsts of A358553. %Y A358554 A000081 counts rooted trees, ordered A000108. %Y A358554 A034781 counts rooted trees by nodes and height. %Y A358554 A055277 counts rooted trees by nodes and leaves. %Y A358554 MG statistics: A061775, A109082, A109129, A196050, A342507, A358552. %Y A358554 Cf. A000040, A000720, A001222, A007097, A056239, A112798. %Y A358554 Cf. A001263, A206487, A358578, A358592. %K A358554 nonn,more %O A358554 1,2 %A A358554 _Gus Wiseman_, Nov 27 2022