A358561 Decimal expansion of the derivative Bi'(0), where Bi is the Airy function of the second kind.
4, 4, 8, 2, 8, 8, 3, 5, 7, 3, 5, 3, 8, 2, 6, 3, 5, 7, 9, 1, 4, 8, 2, 3, 7, 1, 0, 3, 9, 8, 8, 2, 8, 3, 9, 0, 8, 6, 6, 2, 2, 6, 7, 9, 9, 2, 1, 2, 2, 6, 2, 0, 6, 1, 0, 8, 2, 8, 0, 8, 7, 7, 8, 3, 7, 2, 3, 3, 0, 7, 5, 5, 0, 0, 9, 7, 8, 0, 6, 4, 7, 1, 8, 5, 0, 4
Offset: 0
Examples
0.44828835735382635791482371039882839086622679921226206108280877837233075...
References
- F. W. J. Olver, Asymptotics and Special Functions, Academic Press, ISBN 978-0-12-525856-2, 1974.
Links
- [DLMF] NIST Digital Library of Mathematical Functions, Eq. 9.2.6.
- Eric Weisstein's World of Mathematics, Airy Functions.
- Wikipedia, Airy Function.
Crossrefs
Programs
-
Mathematica
RealDigits[AiryBi'[0], 10, 120][[1]] (* Amiram Eldar, Nov 28 2022 *)
-
PARI
derivnum(x=0, airy(x)[2])
-
SageMath
airy_bi_prime(0).n(algorithm='scipy', prec=250)
Formula
Bi'(0) = 3*Gi'(0), where Gi' is the derivative of the inhomogeneous Airy function of the first kind.
Bi'(0) = 3^(1/6)/A073005.
Bi'(0) = 3^(1/4)*AGM(2,(sqrt(2+sqrt(3))))^(1/3)/(2^(7/9) * Pi^(2/3)), where AGM is the arithmetic-geometric mean.