cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358562 The number of antichains in the Tamari lattice of order n.

This page as a plain text file.
%I A358562 #18 Jan 12 2023 19:24:39
%S A358562 2,3,8,83,28984,138832442543
%N A358562 The number of antichains in the Tamari lattice of order n.
%C A358562 Also the number of order ideals (down-sets) for the Tamari lattice of order n.
%D A358562 D. Tamari, The algebra of bracketings and their enumeration, Nieuw Archief voor Wiskunde, Series 3, 10 (1962), 131-146.
%H A358562 S. Huang and D. Tamari, <a href="https://doi.org/10.1016/0097-3165(72)90003-9">Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law</a>, J. of Comb. Theory, Series A, 13 (1972), 7-13.
%H A358562 Dmitry I. Ignatov, <a href="https://github.com/dimachine/TamariAnti">Supporting iPython code and input files for counting (maximal) antichains of the Tamari partition lattice up to n=6</a>, Github repository.
%H A358562 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tamari_lattice">Tamari lattice</a>
%e A358562 For n=3 the a(3)=8 antichains are {}, {((ab)c)d}, {(ab)(cd)}, {(a(bc))d}, {(ab)(cd), (a(bc))d}, {a((bc)d)}, {(ab)(cd), a((bc)d)}, {a(b(cd))}.
%Y A358562 Cf. A000372 (number of antichains in the Boolean lattice).
%Y A358562 Cf. A302250 (number of antichains in the lattice of set partitions).
%Y A358562 Cf. A358391 (number of antichains in the Kreweras lattice of non-crossing set partitions of an n-element set).
%Y A358562 Cf. A143673 (number of antichains in the lattice of Dyck paths).
%Y A358562 Cf. A027686.
%K A358562 nonn,hard,more
%O A358562 1,1
%A A358562 _Dmitry I. Ignatov_, Nov 22 2022