cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358563 The number of maximal antichains in the Tamari lattice of order n.

This page as a plain text file.
%I A358563 #12 Jan 25 2023 09:54:46
%S A358563 1,2,4,26,1979,161117453
%N A358563 The number of maximal antichains in the Tamari lattice of order n.
%C A358563 Also the number of maximal order ideals in the Tamari lattice of order n.
%C A358563 Maximal antichains are those which cannot be extended without violating the antichain condition.
%D A358563 D. Tamari, The algebra of bracketings and their enumeration, Nieuw Archief voor Wiskunde, Series 3, 10 (1962), 131-146.
%H A358563 S. Huang and D. Tamari, <a href="https://doi.org/10.1016/0097-3165(72)90003-9">Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law</a>, J. of Comb. Theory, Series A, 13 (1972), 7-13.
%H A358563 Dmitry I. Ignatov, <a href="https://github.com/dimachine/TamariAnti">Supporting iPython code and input files for counting (maximal) antichains of the Tamari partition lattice up to n=5</a>, Github repository.
%H A358563 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tamari_lattice">Tamari lattice</a>
%e A358563 The line (Hasse) diagram of the Tamari lattice for n=3 is
%e A358563      ((ab)c)d
%e A358563       /     \
%e A358563  (a(bc))d (ab)(cd)
%e A358563      |       /
%e A358563   a((bc)d)  /
%e A358563       \    /
%e A358563      a(b(cd))
%e A358563 with the a(3)=4 maximal antichains {((ab)c)d}, {(ab)(cd), (a(bc))d}, {(ab)(cd), a((bc)d)}, {a(b(cd))}.
%Y A358563 Cf. A358562 (number of antichains in the Tamari lattice).
%Y A358563 Cf. A326358 (number of maximal antichains in the Boolean lattice).
%Y A358563 Cf. A358041 (number of maximal antichains in the lattice of set partitions of an n-element set).
%Y A358563 Cf. A358390 (number of maximal antichains in the Kreweras lattice of non-crossing set partitions).
%Y A358563 Cf. A143674 (number of maximal antichains in the lattice of Dyck paths).
%K A358563 nonn,hard,more
%O A358563 1,2
%A A358563 _Dmitry I. Ignatov_, Nov 22 2022