cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358564 Decimal expansion of Gi(0), where Gi is the inhomogeneous Airy function of the first kind (also called Scorer function).

This page as a plain text file.
%I A358564 #19 Nov 26 2024 14:53:08
%S A358564 2,0,4,9,7,5,5,4,2,4,8,2,0,0,0,2,4,5,0,5,0,3,0,7,4,5,6,3,6,4,5,3,7,8,
%T A358564 5,1,1,9,8,2,4,2,7,2,9,5,4,9,5,3,2,1,6,8,3,4,6,9,5,9,5,8,4,3,3,8,0,9,
%U A358564 8,8,3,9,7,6,8,5,0,6,8,8,0,1,7,6,4,6,2
%N A358564 Decimal expansion of Gi(0), where Gi is the inhomogeneous Airy function of the first kind (also called Scorer function).
%D A358564 Scorer, R. S., Numerical evaluation of integrals of the form Integral_{x=x1..x2} f(x)*e^(i*phi(x))dx and the tabulation of the function Gi(z)=(1/Pi)*Integral_{u=0..oo} sin(u*z+u^3/3) du, Quart. J. Mech. Appl. Math. 3 (1950), 107-112.
%H A358564 Amparo Gil, Javier Segura, and Nico Temme, <a href="https://doi.org/10.1090/S0025-5718-00-01268-0">On nonoscillating integrals for computing inhomogeneous Airy functions</a>, Mathematics of Computation 70.235 (2001): 1183-1194.
%H A358564 [DLMF] NIST Digital Library of Mathematical Functions, <a href="https://dlmf.nist.gov/9.12.E6">Eq. 9.12.6</a>.
%H A358564 Allan J. MacLeod, <a href="https://doi.org/10.1016/0377-0427(94)90196-1">Computation of inhomogeneous Airy functions</a>, Journal of Computational and Applied Mathematics, Volume 53, Issue 1, 1994, Pages 109-116, ISSN 0377-0427.
%H A358564 Wikipedia, <a href="https://en.wikipedia.org/wiki/Scorer&#39;s_function">Scorer's function</a>.
%H A358564 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F A358564 Gi(0) = A358559/3.
%F A358564 Gi(0) = A284867/A002194.
%F A358564 Gi(0) = Hi(0)/2, where Hi is the inhomogeneous Airy function of the second kind.
%F A358564 Gi(0) = 1/(3^(7/6)*A073006).
%F A358564 Gi(0) = A073005/(3^(7/6)*A186706).
%F A358564 Gi(0) = A073005/(3^(7/6)*2*A093602).
%F A358564 Gi(0) = A073005/(3^(4/6)*2*A000796).
%F A358564 Gi(0) = A252799/(3^(7/6)*BarnesG(5/3)).
%F A358564 Gi(0) = 1/(3^(3/4) * 2^(2/9) * Pi^(1/3) * AGM(2,(sqrt(2+sqrt(3))))^(1/3)), where AGM is the arithmetic-geometric mean.
%e A358564 0.204975542482000245050307456364537851198242729549532168346959584338098839...
%t A358564 First[RealDigits[N[ScorerGi[0],90]]] (* _Stefano Spezia_, Nov 28 2022 *)
%o A358564 (PARI) airy(0)[2]/3
%o A358564 (PARI) 1/(3^(7/6)*gamma(2/3))
%o A358564 (PARI) sqrt(3)*gamma(1/3)/(3^(7/6)*2*Pi)
%o A358564 (PARI) 1/(3^(3/4)*2^(2/9)*Pi^(1/3)*sqrtn(agm(2,(sqrt(2+sqrt(3)))),3))
%o A358564 (SageMath) 1/(3^(7/6)*gamma(2/3)).n(algorithm='scipy', prec=250)
%Y A358564 Cf. A284867 (Ai(0)), A284868 (Ai'(0)), A358559 (Bi(0)), A358561 (Bi'(0)), this sequence (Gi(0)).
%K A358564 cons,nonn
%O A358564 0,1
%A A358564 _Dumitru Damian_, Nov 22 2022