This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358579 #6 Nov 26 2022 12:34:55 %S A358579 2,6,7,9,20,22,23,26,27,29,35,41,66,76,78,79,84,86,87,90,91,93,97,102, %T A358579 103,106,107,109,115,117,130,136,138,139,141,146,153,163,169,193,196, %U A358579 197,201,226,241,262,263,296,300,302,303,308,310,311,314,315,317 %N A358579 Numbers k such that the k-th standard ordered rooted tree has the same number of leaves as internal (non-leaf) nodes. %C A358579 We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees. %F A358579 A358371(a(n)) = A358553(a(n)). %e A358579 The terms together with their corresponding rooted trees begin: %e A358579 2: (o) %e A358579 6: (o(o)) %e A358579 7: ((oo)) %e A358579 9: ((o)(o)) %e A358579 20: (oo((o))) %e A358579 22: (o(((o)))) %e A358579 23: (((o)(o))) %e A358579 26: (o(o(o))) %e A358579 27: ((o)(o)(o)) %e A358579 29: ((o((o)))) %e A358579 35: (((o))(oo)) %e A358579 41: (((o(o)))) %e A358579 66: (o(o)(((o)))) %e A358579 76: (oo(ooo)) %e A358579 78: (o(o)(o(o))) %e A358579 79: ((o(((o))))) %e A358579 84: (oo(o)(oo)) %e A358579 86: (o(o(oo))) %t A358579 stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]]; %t A358579 srt[n_]:=If[n==1,{},srt/@stc[n-1]]; %t A358579 Select[Range[100],Count[srt[#],{},{0,Infinity}]==Count[srt[#],_[__],{0,Infinity}]&] %Y A358579 These ordered trees are counted by A000891. %Y A358579 The unordered version is A358578, counted by A185650. %Y A358579 Height instead of leaves: counted by A358588, unordered A358576. %Y A358579 Height instead of internals: counted by A358590, unordered A358577. %Y A358579 Standard ordered tree number statistics: A358371, A358372, A358379, A358553. %Y A358579 A000081 counts rooted trees, ordered A000108. %Y A358579 A055277 counts trees by nodes and leaves, ordered A001263. %Y A358579 Cf. A014221, A206487, A358373, A358580, A358587, A358589. %K A358579 nonn %O A358579 1,1 %A A358579 _Gus Wiseman_, Nov 25 2022