This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358582 #9 Dec 30 2022 21:38:34 %S A358582 0,0,1,1,5,7,28,48,176,336,1179,2420,8269,17855,59832,134289,443407, %T A358582 1025685,3346702,7933161,25632265,62000170,198670299,488801159, %U A358582 1555187172,3882403641,12276230777,31034921462,97601239282,249471619165,780790439063,2015194486878 %N A358582 Number of rooted trees with n nodes, most of which are not leaves. %H A358582 Andrew Howroyd, <a href="/A358582/b358582.txt">Table of n, a(n) for n = 1..200</a> %F A358582 A358581(n) + A358584(n) = A000081(n). %F A358582 A358582(n) + A358583(n) = A000081(n). %F A358582 a(n) = Sum_{k=1..floor((n-1)/2)} A055277(n, k). - _Andrew Howroyd_, Dec 30 2022 %e A358582 The a(3) = 1 through a(6) = 7 trees: %e A358582 ((o)) (((o))) (((oo))) ((((oo)))) %e A358582 ((o)(o)) (((o)(o))) %e A358582 ((o(o))) (((o(o)))) %e A358582 (o((o))) ((o)((o))) %e A358582 ((((o)))) ((o((o)))) %e A358582 (o(((o)))) %e A358582 (((((o))))) %t A358582 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358582 Table[Length[Select[art[n],Count[#,{},{0,Infinity}]<Count[#,_[__],{0,Infinity}]&]],{n,0,10}] %o A358582 (PARI) \\ See A358584 for R(n). %o A358582 seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..(n-1)\2]))} \\ _Andrew Howroyd_, Dec 30 2022 %Y A358582 For equality we have A185650 aerated, ranked by A358578. %Y A358582 The opposite version is A358581, non-strict A358583. %Y A358582 The non-strict version is A358584. %Y A358582 The ordered version is A358585, odd-indexed terms A065097. %Y A358582 A000081 counts rooted trees, ordered A000108. %Y A358582 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358582 A358575 counts rooted trees by nodes and internal nodes, ordered A090181. %Y A358582 A358589 counts square trees, ranked by A358577, ordered A358590. %Y A358582 Cf. A000891, A034781, A109129, A342507, A358579, A358580, A358586, A358591. %K A358582 nonn %O A358582 1,5 %A A358582 _Gus Wiseman_, Nov 23 2022 %E A358582 Terms a(19) and beyond from _Andrew Howroyd_, Dec 30 2022