This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358583 #9 Dec 31 2022 15:05:20 %S A358583 1,1,1,3,4,13,20,67,110,383,663,2346,4217,15118,27979,101092,191440, %T A358583 695474,1341974,4893067,9589567,35055011,69612556,254923825,511987473, %U A358583 1877232869,3807503552,13972144807,28585315026,104955228432,216381073935,794739865822 %N A358583 Number of rooted trees with n nodes, at least half of which are leaves. %H A358583 Andrew Howroyd, <a href="/A358583/b358583.txt">Table of n, a(n) for n = 1..200</a> %F A358583 A358581(n) + A358584(n) = A000081(n). %F A358583 A358582(n) + A358583(n) = A000081(n). %F A358583 a(n) = Sum_{k=floor((n-1)/2)+1..n} A055277(n, k). - _Andrew Howroyd_, Dec 31 2022 %e A358583 The a(1) = 1 through a(6) = 13 trees: %e A358583 o (o) (oo) (ooo) (oooo) (ooooo) %e A358583 ((oo)) ((ooo)) ((oooo)) %e A358583 (o(o)) (o(oo)) (o(ooo)) %e A358583 (oo(o)) (oo(oo)) %e A358583 (ooo(o)) %e A358583 (((ooo))) %e A358583 ((o)(oo)) %e A358583 ((o(oo))) %e A358583 ((oo(o))) %e A358583 (o((oo))) %e A358583 (o(o)(o)) %e A358583 (o(o(o))) %e A358583 (oo((o))) %t A358583 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358583 Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>=Count[#,_[__],{0,Infinity}]&]],{n,1,10}] %o A358583 (PARI) \\ See A358584 for R(n). %o A358583 seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[(n-1)\2+1..#u]))} \\ _Andrew Howroyd_, Dec 31 2022 %Y A358583 For equality we have A185650 aerated, ranked by A358578. %Y A358583 The strict case is A358581. %Y A358583 The opposite version is A358584, strict A358582. %Y A358583 The ordered version is A358586, strict A358585. %Y A358583 A000081 counts rooted trees, ordered A000108. %Y A358583 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358583 A358575 counts rooted trees by nodes and internal nodes, ordered A090181. %Y A358583 A358589 counts square rooted trees, ranked by A358577, ordered A358590. %Y A358583 Cf. A000891, A034781, A065097, A109129, A342507, A358579, A358580, A358586. %K A358583 nonn %O A358583 1,4 %A A358583 _Gus Wiseman_, Nov 23 2022 %E A358583 Terms a(19) and beyond from _Andrew Howroyd_, Dec 31 2022