This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358584 #11 Dec 30 2022 21:38:42 %S A358584 0,1,1,3,5,15,28,87,176,550,1179,3688,8269,25804,59832,186190,443407, %T A358584 1375388,3346702,10348509,25632265,79020511,198670299,610740694, %U A358584 1555187172,4768244803,12276230777,37546795678,97601239282,297831479850,780790439063,2377538260547 %N A358584 Number of rooted trees with n nodes, at most half of which are leaves. %H A358584 Andrew Howroyd, <a href="/A358584/b358584.txt">Table of n, a(n) for n = 1..200</a> %F A358584 A358581(n) + A358584(n) = A000081(n). %F A358584 A358582(n) + A358583(n) = A000081(n). %F A358584 a(n) = Sum_{k=1..floor(n/2)} A055277(n, k). - _Andrew Howroyd_, Dec 30 2022 %e A358584 The a(2) = 1 through a(6) = 15 trees: %e A358584 (o) ((o)) ((oo)) (((oo))) (((ooo))) %e A358584 (o(o)) ((o)(o)) ((o)(oo)) %e A358584 (((o))) ((o(o))) ((o(oo))) %e A358584 (o((o))) ((oo(o))) %e A358584 ((((o)))) (o((oo))) %e A358584 (o(o)(o)) %e A358584 (o(o(o))) %e A358584 (oo((o))) %e A358584 ((((oo)))) %e A358584 (((o)(o))) %e A358584 (((o(o)))) %e A358584 ((o)((o))) %e A358584 ((o((o)))) %e A358584 (o(((o)))) %e A358584 (((((o))))) %t A358584 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358584 Table[Length[Select[art[n],Count[#,{},{0,Infinity}]<=Count[#,_[__],{0,Infinity}]&]],{n,0,10}] %o A358584 (PARI) %o A358584 R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + O(x*x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)}; %o A358584 seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..n\2]))} \\ _Andrew Howroyd_, Dec 30 2022 %Y A358584 For equality we have A185650 aerated, ranked by A358578. %Y A358584 The complement is A358581. %Y A358584 The strict case is A358582. %Y A358584 The opposite version is A358583. %Y A358584 A000081 counts rooted trees, ordered A000108. %Y A358584 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358584 A358575 counts rooted trees by nodes and internal nodes, ordered A090181. %Y A358584 A358589 counts square trees, ranked by A358577, ordered A358590. %Y A358584 Cf. A000891, A034781, A065097, A109129, A342507, A358579, A358580, A358585, A358586, A358591. %K A358584 nonn %O A358584 1,4 %A A358584 _Gus Wiseman_, Nov 23 2022 %E A358584 Terms a(19) and beyond from _Andrew Howroyd_, Dec 30 2022