This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358586 #9 Jan 13 2024 16:13:28 %S A358586 1,1,1,4,7,31,66,302,715,3313,8398,39095,104006,484706,1337220, %T A358586 6227730,17678835,82204045,238819350,1108202513,3282060210, %U A358586 15195242478,45741281820,211271435479,644952073662,2971835602526,9183676536076,42217430993002,131873975875180,604834233372884 %N A358586 Number of ordered rooted trees with n nodes, at least half of which are leaves. %H A358586 Andrew Howroyd, <a href="/A358586/b358586.txt">Table of n, a(n) for n = 1..1000</a> %F A358586 From _Andrew Howroyd_, Jan 13 2024: (Start) %F A358586 a(n) = Sum_{k=1..floor(n/2)} A001263(n-1, k) for n >= 2. %F A358586 a(2*n) = (A000108(2*n-1) + A000891(n-1))/2 for n >= 1; %F A358586 a(2*n+1) = A000108(2*n)/2 for n >= 1. (End) %e A358586 The a(1) = 1 through a(5) = 7 ordered trees: %e A358586 o (o) (oo) (ooo) (oooo) %e A358586 ((o)o) ((o)oo) %e A358586 ((oo)) ((oo)o) %e A358586 (o(o)) ((ooo)) %e A358586 (o(o)o) %e A358586 (o(oo)) %e A358586 (oo(o)) %t A358586 aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358586 Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>=Count[#,_[__],{0,Infinity}]&]],{n,1,10}] %o A358586 (PARI) a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) + if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ _Andrew Howroyd_, Jan 13 2024 %Y A358586 For equality we have A000891, unordered A185650. %Y A358586 Odd-indexed terms appear to be A065097. %Y A358586 The unordered version is A358583. %Y A358586 The opposite is the same, unordered A358584. %Y A358586 The strict case is A358585, unordered A358581. %Y A358586 A000108 counts ordered rooted trees, unordered A000081. %Y A358586 A001263 counts ordered rooted trees by nodes and leaves, unordered A055277. %Y A358586 A080936 counts ordered rooted trees by nodes and height, unordered A034781. %Y A358586 A090181 counts ordered rooted trees by nodes and internals, unord. A358575. %Y A358586 A358590 counts square ordered trees, unordered A358589 (ranked by A358577). %Y A358586 Cf. A109129, A342507, A358371, A358579, A358580, A358582, A358584, A358588. %K A358586 nonn %O A358586 1,4 %A A358586 _Gus Wiseman_, Nov 24 2022 %E A358586 a(16) onwards from _Andrew Howroyd_, Jan 13 2024