This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358587 #14 Apr 15 2024 04:56:44 %S A358587 0,0,0,0,1,4,14,41,111,282,688,1627,3761,8540,19122,42333,92851, %T A358587 202078,436916,939359,2009781,4281696,9087670,19223905,40544951, %U A358587 85284194,178956984,374691171,782936761,1632982372,3400182458,7068800357,14674471611,30422685030 %N A358587 Number of n-node rooted trees of height equal to the number of internal (non-leaf) nodes. %H A358587 Andrew Howroyd, <a href="/A358587/b358587.txt">Table of n, a(n) for n = 1..200</a> %F A358587 Conjectures from _Chai Wah Wu_, Apr 15 2024: (Start) %F A358587 a(n) = 5*a(n-1) - 7*a(n-2) - a(n-3) + 8*a(n-4) - 4*a(n-5) for n > 7. %F A358587 G.f.: x^5*(x^2 - x + 1)/((x - 1)^2*(x + 1)*(2*x - 1)^2). (End) %e A358587 The a(5) = 1 through a(7) = 14 trees: %e A358587 ((o)(o)) ((o)(oo)) ((o)(ooo)) %e A358587 (o(o)(o)) ((oo)(oo)) %e A358587 (((o)(o))) (o(o)(oo)) %e A358587 ((o)((o))) (oo(o)(o)) %e A358587 (((o))(oo)) %e A358587 (((o)(oo))) %e A358587 ((o)((oo))) %e A358587 ((o)(o(o))) %e A358587 ((o(o)(o))) %e A358587 (o((o)(o))) %e A358587 (o(o)((o))) %e A358587 ((((o)(o)))) %e A358587 (((o)((o)))) %e A358587 ((o)(((o)))) %t A358587 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358587 Table[Length[Select[art[n],Count[#,_[__],{0,Infinity}]==Depth[#]-1&]],{n,1,10}] %o A358587 (PARI) \\ Needs R(n,f) defined in A358589. %o A358587 seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ _Andrew Howroyd_, Jan 01 2023 %Y A358587 For leaves instead of height we have A185650 aerated, ranked by A358578. %Y A358587 These trees are ranked by A358576. %Y A358587 The ordered version is A358588. %Y A358587 Square trees are counted by A358589, ranked by A358577, ordered A358590. %Y A358587 A000081 counts rooted trees, ordered A000108. %Y A358587 A034781 counts rooted trees by nodes and height, ordered A080936. %Y A358587 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358587 A358575 counts rooted trees by nodes and internal nodes, ordered A090181. %Y A358587 Cf. A000891, A065097, A342507, A358552, A358581-A358584, A358591. %K A358587 nonn %O A358587 1,6 %A A358587 _Gus Wiseman_, Nov 23 2022 %E A358587 Terms a(19) and beyond from _Andrew Howroyd_, Jan 01 2023