This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358589 #12 Jan 01 2023 12:34:46 %S A358589 1,0,1,0,3,2,11,17,55,107,317,720,1938,4803,12707,32311,85168,220879, %T A358589 581112,1522095,4014186,10568936,27934075,73826753,195497427, %U A358589 517927859,1373858931,3646158317,9684878325,25737819213,68439951884,182070121870,484583900955,1290213371950 %N A358589 Number of square rooted trees with n nodes. %C A358589 We say that a tree is square if it has the same height as number of leaves. %H A358589 Andrew Howroyd, <a href="/A358589/b358589.txt">Table of n, a(n) for n = 1..200</a> %e A358589 The a(1) = 1 through a(7) = 11 trees: %e A358589 o . (oo) . ((ooo)) ((o)(oo)) (((oooo))) %e A358589 (o(oo)) (o(o)(o)) ((o(ooo))) %e A358589 (oo(o)) ((oo(oo))) %e A358589 ((ooo(o))) %e A358589 (o((ooo))) %e A358589 (o(o(oo))) %e A358589 (o(oo(o))) %e A358589 (oo((oo))) %e A358589 (oo(o(o))) %e A358589 (ooo((o))) %e A358589 ((o)(o)(o)) %t A358589 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358589 Table[Length[Select[art[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}] %o A358589 (PARI) \\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y). %o A358589 R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1 + exp( sum(i=1, n-1, 1/i * subst( subst( A + O(x*x^((n-1)\i)), x, x^i), y, y^i) ) )); Z += f(h, A-p)); Z} %o A358589 seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ _Andrew Howroyd_, Jan 01 2023 %Y A358589 For internals instead of height we have A185650 aerated, ranked by A358578. %Y A358589 These trees are ranked by A358577. %Y A358589 For internals instead of leaves we have A358587, ranked by A358576. %Y A358589 The ordered version is A358590. %Y A358589 A000081 counts rooted trees, ordered A000108. %Y A358589 A034781 counts rooted trees by nodes and height, ordered A080936. %Y A358589 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358589 A358575 counts rooted trees by nodes and internal nodes, ordered A090181. %Y A358589 Cf. A000891, A065097, A109129, A358552, A358588, A358591. %K A358589 nonn %O A358589 1,5 %A A358589 _Gus Wiseman_, Nov 23 2022 %E A358589 Terms a(19) and beyond from _Andrew Howroyd_, Jan 01 2023