This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358590 #9 Jan 02 2023 00:06:12 %S A358590 1,0,1,0,6,5,36,84,309,890,3163,9835,32979,108252,360696,1192410, %T A358590 3984552,13276769,44371368,148402665,497072593,1665557619,5586863093, %U A358590 18750662066,62968243731,211565969511,711187790166,2391640404772,8045964959333,27077856222546 %N A358590 Number of square ordered rooted trees with n nodes. %C A358590 We say that a tree is square if it has the same height as number of leaves. %H A358590 Andrew Howroyd, <a href="/A358590/b358590.txt">Table of n, a(n) for n = 1..200</a> %e A358590 The a(1) = 1 through a(6) = 5 ordered trees: %e A358590 o . (oo) . ((o)oo) ((o)(o)o) %e A358590 ((oo)o) ((o)(oo)) %e A358590 ((ooo)) ((o)o(o)) %e A358590 (o(o)o) ((oo)(o)) %e A358590 (o(oo)) (o(o)(o)) %e A358590 (oo(o)) %t A358590 aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358590 Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}] %o A358590 (PARI) \\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y). %o A358590 R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1 + 1/(1 - A + O(x^n))); Z += f(h, A-p)); Z} %o A358590 seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ _Andrew Howroyd_, Jan 01 2023 %Y A358590 For internals instead of height we have A000891, unordered A185650 aerated. %Y A358590 For internals instead of leaves we have A358588, unordered A358587. %Y A358590 The unordered version is A358589, ranked by A358577. %Y A358590 A000108 counts ordered rooted trees, unordered A000081. %Y A358590 A001263 counts ordered rooted trees by nodes and leaves, unordered A055277. %Y A358590 A080936 counts ordered rooted trees by nodes and height, unordered A034781. %Y A358590 A090181 counts ordered rooted trees by nodes and internals, unord. A358575. %Y A358590 Cf. A065097, A109129, A358371, A358552, A358579, A358586. %K A358590 nonn %O A358590 1,5 %A A358590 _Gus Wiseman_, Nov 25 2022 %E A358590 Terms a(16) and beyond from _Andrew Howroyd_, Jan 01 2023