cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358591 Number of 2n-node rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.

This page as a plain text file.
%I A358591 #10 Jan 01 2023 14:46:36
%S A358591 0,0,2,17,94,464,2162,9743,42962,186584,801316,3412034,14430740,
%T A358591 60700548,254180426,1060361147,4409342954,18285098288,75645143516,
%U A358591 312286595342,1286827096964,5293833371408,21745951533236,89208948855542,365523293690804,1496048600896784
%N A358591 Number of 2n-node rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.
%H A358591 Andrew Howroyd, <a href="/A358591/b358591.txt">Table of n, a(n) for n = 1..100</a>
%e A358591 The a(3) = 2 and a(4) = 17 trees:
%e A358591   ((o)(oo))  (((o))(ooo))
%e A358591   (o(o)(o))  (((o)(ooo)))
%e A358591              (((oo))(oo))
%e A358591              (((oo)(oo)))
%e A358591              ((o)((ooo)))
%e A358591              ((o)(o(oo)))
%e A358591              ((o)(oo(o)))
%e A358591              ((o(o)(oo)))
%e A358591              ((oo)(o(o)))
%e A358591              ((oo(o)(o)))
%e A358591              (o((o))(oo))
%e A358591              (o((o)(oo)))
%e A358591              (o(o)((oo)))
%e A358591              (o(o)(o(o)))
%e A358591              (o(o(o)(o)))
%e A358591              (oo((o)(o)))
%e A358591              (oo(o)((o)))
%t A358591 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
%t A358591 Table[Length[Select[art[n],Count[#,_[__],{0,Infinity}]==Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,2,15,2}]
%o A358591 (PARI) \\ Needs R(n,f) defined in A358589.
%o A358591 seq(n) = {Vecrev(R(2*n, (h,p)->if(h<=n, x^h*polcoef(polcoef(p, 2*h, x), h, y))), -n)} \\ _Andrew Howroyd_, Jan 01 2023
%Y A358591 For leaves = internals we have A185650 aerated, ranked by A358578.
%Y A358591 For height = internals we have A358587, ranked by A358576, ordered A358588.
%Y A358591 For height = leaves we have A358589, ranked by A358577, ordered A358590.
%Y A358591 These trees are ranked by A358592.
%Y A358591 A000081 counts rooted trees, ordered A000108.
%Y A358591 A034781 counts rooted trees by nodes and height, ordered A080936.
%Y A358591 A055277 counts rooted trees by nodes and leaves, ordered A001263.
%Y A358591 A358575 counts rooted trees by nodes and internal nodes, ordered A090181.
%Y A358591 Cf. A065097, A109082, A109129, A342507, A358552, A358581-A358586.
%K A358591 nonn
%O A358591 1,3
%A A358591 _Gus Wiseman_, Nov 23 2022
%E A358591 Terms a(10) and beyond from _Andrew Howroyd_, Jan 01 2023