cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358612 Irregular table T(n, k), n >= 0, k > 0, read by rows of extended (due to binary expansion of n) Stirling numbers of the second kind.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 2, 1, 7, 6, 1, 1, 9, 4, 1, 11, 11, 2, 1, 13, 15, 3, 1, 15, 25, 10, 1, 1, 17, 8, 1, 19, 21, 4, 1, 21, 28, 6, 1, 23, 44, 19, 2, 1, 25, 39, 9, 1, 27, 58, 27, 3, 1, 29, 68, 34, 4, 1, 31, 90, 65, 15, 1, 1, 33, 16, 1, 35, 41, 8, 1, 37, 54, 12, 1
Offset: 0

Views

Author

Mikhail Kurkov, Nov 23 2022

Keywords

Comments

Row n length is A000120(n) + 2.

Examples

			Irregular table begins:
  1,  1;
  1,  3,  1;
  1,  5,  2;
  1,  7,  6,  1;
  1,  9,  4;
  1, 11, 11,  2;
  1, 13, 15,  3;
  1, 15, 25, 10,  1;
  1, 17,  8;
  1, 19, 21,  4;
  1, 21, 28,  6;
  1, 23, 44, 19,  2;
  1, 25, 39,  9;
  1, 27, 58, 27,  3;
  1, 29, 68, 34,  4;
  1, 31, 90, 65, 15, 1;
		

Crossrefs

Programs

  • PARI
    T(n, k)=if(n==0 || k==1, (n==0 && k<3) + (k==1 && n>0), k*T(n\2, k) + T(n\2, k-1) - if(n%2==0, (T(n, k-1) + T(n\2,k-1))/(k-1)))
    
  • PARI
    row(n) = my(A, v1, v2); v1 = [1, 1]; if(n == 0, v1, forstep(i=logint(n, 2), 0, -1, A = bittest(n, i); v2 = vector(#v1+A, i, 0); v2[1] = 1; for(j=2, #v2, v2[j] = j*if(j==#v1+1, 0, v1[j]) + v1[j-1] - if(A, 0, (v2[j-1] + v1[j-1])/(j-1))); v1 = v2); v1) \\ Mikhail Kurkov, Apr 30 2024

Formula

T(n, 1) = 1 for n > 0 with T(0, 1) = T(0, 2) = 1.
T(2n+1, k) = k*T(n, k) + T(n, k-1) for n >= 0, k > 1.
T(2n, k) = k*T(n, k) + T(n, k-1) - (T(2n, k-1) + T(n, k-1))/(k-1) for n > 0, k > 1.
T(2^n - 1, k) = Stirling2(n+2, k) for n >= 0, k > 0.
T(n, 2) = 2n+1 for n >= 0.
Conjectured formulas: (Start)
T(n, A000120(n) + 2) = A341392(n) for n >= 0.
Sum_{i=1..wt(k) + 2} i!*i^m*T(k, i)*(-1)^(wt(k) - i + 2) = A329369(2^m*(2k+1)) for m >= 0, k >= 0 where wt(n) = A000120(n). (End)
Conjecture: T(n, k) = (k-1)^g(n)*T(h(n), k-1) + k^(g(n)+1)*T(h(n), k) for n > 0, k > 1 with T(n, 1) = T(0, 2) = 1 where g(n) = A007814(n) and where h(n) = A025480(n-1). - Mikhail Kurkov, Jun 21 2024