This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358614 #52 Dec 17 2022 20:02:05 %S A358614 3,9,7,7,4,7,5,6,4,4,1,7,4,3,2,9,8,2,4,7,5,4,7,4,9,5,3,6,8,3,9,7,7,5, %T A358614 8,4,5,9,7,7,2,0,2,1,4,9,4,9,7,6,6,6,4,5,5,8,0,9,4,1,1,7,6,3,0,9,8,9, %U A358614 3,5,0,9,5,6,7,4,6,7,6,0,4,6,7,6,6,7,1,4,9,4,0,2,9,6,4,9,1,9,2 %N A358614 Decimal expansion of 9*sqrt(2)/32. %C A358614 Smallest constant M such that the inequality %C A358614 |a*b*(a^2 - b^2) + b*c*(b^2 - c^2) + c*a*(c^2 - a^2)| <= M * (a^2 + b^2 + c^2)^2 %C A358614 holds for all real numbers a, b, c. %C A358614 Equality stands for any triple (a, b, c) proportional to (1 - 3*sqrt(2)/2, 1, 1 + 3*sqrt(2)/2), up to permutation. %C A358614 This constant is the answer to the 3rd problem, proposed by Ireland during the 47th International Mathematical Olympiad in 2006 at Ljubljana, Slovenia (see links). %C A358614 Equivalently |(a - b)(b - c)(c - a)(a + b + c)| / (a^2 + b^2 + c^2)^2 <= M with (a,b,c) != (0,0,0). %H A358614 Evan Chen, <a href="https://web.evanchen.cc/exams/IMO-2006-notes.pdf">IMO 2006/3</a>, IMO 2006 Solution Notes. %H A358614 The IMO compendium, <a href="https://imomath.com/othercomp/I/Imo2006.pdf">Problem 3</a>, 47th IMO 2006. %H A358614 <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>. %F A358614 Equals (3/16) * A230981 = (3/32) * A010474 = (9/32) * A002193 = (9/16) * A010503. %e A358614 0.3977475644174329824... %p A358614 evalf(9*sqrt(2)/32), 100); %t A358614 RealDigits[9*Sqrt[2]/32, 10, 120][[1]] (* _Amiram Eldar_, Dec 05 2022 *) %Y A358614 Cf. A002193, A010474, A010503, A230981. %K A358614 nonn,cons,easy %O A358614 0,1 %A A358614 _Bernard Schott_, Dec 05 2022