A358623 Regular triangle read by rows. T(n, k) = {{n, k}}, where {{n, k}} are the second order Stirling set numbers (or second order Stirling numbers). T(n, k) for 0 <= k <= n.
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 10, 0, 0, 0, 0, 1, 25, 15, 0, 0, 0, 0, 1, 56, 105, 0, 0, 0, 0, 0, 1, 119, 490, 105, 0, 0, 0, 0, 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0, 0, 1, 501, 6825, 9450, 945, 0, 0, 0, 0, 0, 0, 1, 1012, 22935, 56980, 17325, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 0, 0; [2] 0, 1, 0; [3] 0, 1, 0, 0; [4] 0, 1, 3, 0, 0; [5] 0, 1, 10, 0, 0, 0; [6] 0, 1, 25, 15, 0, 0, 0; [7] 0, 1, 56, 105, 0, 0, 0, 0; [8] 0, 1, 119, 490, 105, 0, 0, 0, 0; [9] 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0;
References
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994, thirty-fourth printing 2022.
Links
- Antal E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
Crossrefs
Programs
-
Maple
T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j)*(-1)^(k - j), j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Using the e.g.f.: egf := exp(z*(exp(t) - t - 1)): ser := series(egf, t, 12): seq(print(seq(n!*coeff(coeff(ser, t, n), z, k), k = 0..n)), n = 0..9); # Using second order Eulerian numbers: A358623 := proc(n, k) if n = 0 then return 1 fi; add(binomial(j, n - 2*k)*combinat:-eulerian2(n - k, n - k - j - 1), j = 0..n-k-1) end: seq(seq(A358623(n, k), k = 0..n), n = 0..11);
-
Python
# recursion over rows from functools import cache @cache def StirlingSetOrd2(n: int) -> list[int]: if n == 0: return [1] if n == 1: return [0, 0] rov: list[int] = StirlingSetOrd2(n - 2) row: list[int] = StirlingSetOrd2(n - 1) + [0] for k in range(1, n // 2 + 1): row[k] = (n - 1) * rov[k - 1] + k * row[k] return row for n in range(9): print(StirlingSetOrd2(n)) # Alternative, using function BellMatrix from A264428. def f(k: int) -> int: return 1 if k > 0 else 0 print(BellMatrix(f, 9))
Formula
T(n, k) = Sum_{j=0..k} (-1)^(k - j)*binomial(j, k - j)*<>, where <> denote the second order Eulerian numbers (extending Knuth's notation).
T(n, k) = n!*[z^k][t^n] exp(z*(exp(t) - t - 1)).
T(n, k) = Sum_{j=0..k} (-1)^(k - j)*binomial(n, k - j)*{n - k + j, j}, where {n, k} denotes the Stirling set numbers.
T(n, k) = (n - 1) * T(n-2, k-1) + k * T(n-1, k) with suitable boundary conditions.
T(n + k, k) = A269939(n, k), which might be called the Ward set numbers.
Comments