cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358624 Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1).

This page as a plain text file.
%I A358624 #8 Nov 28 2022 05:06:00
%S A358624 1,1,2,2,6,6,6,22,30,20,24,100,170,140,70,120,548,1050,1120,630,252,
%T A358624 720,3528,7476,8820,6720,2772,924,5040,26136,59388,78708,64680,37884,
%U A358624 12012,3432,40320,219168,529896,748440,704550,432432,204204,51480,12870
%N A358624 Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1).
%D A358624 A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag Berlin Heidelberg, 1991.
%F A358624 The general formula for the Hahn polynomials is H(n, x, N, a, b) = (-1)^n*(Pochhammer(N-n, n)*Pochhammer(b+1, n) / n!)*hypergeom([-n, -x, a + b + n + 1], [b + 1, 1 - N], 1). We consider here the case N = a = b = 0.
%e A358624 [0]     1;
%e A358624 [1]     1,      2;
%e A358624 [2]     2,      6,      6;
%e A358624 [3]     6,     22,     30,     20;
%e A358624 [4]    24,    100,    170,    140,     70;
%e A358624 [5]   120,    548,   1050,   1120,    630,    252;
%e A358624 [6]   720,   3528,   7476,   8820,   6720,   2772,    924;
%e A358624 [7]  5040,  26136,  59388,  78708,  64680,  37884,  12012,  3432;
%e A358624 [8] 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870;
%p A358624 H := (n, x) -> n!*hypergeom([-x, -n, n + 1], [1, 1], 1):
%p A358624 for n from 0 to 8 do seq(coeff(simplify(H(n, x)), x, k), k = 0..n) od;
%Y A358624 Cf. A000142, A000984, A001564 (row sums), A133942 (alternating row sums).
%K A358624 nonn,tabl
%O A358624 0,3
%A A358624 _Peter Luschny_, Nov 26 2022