This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358624 #8 Nov 28 2022 05:06:00 %S A358624 1,1,2,2,6,6,6,22,30,20,24,100,170,140,70,120,548,1050,1120,630,252, %T A358624 720,3528,7476,8820,6720,2772,924,5040,26136,59388,78708,64680,37884, %U A358624 12012,3432,40320,219168,529896,748440,704550,432432,204204,51480,12870 %N A358624 Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1). %D A358624 A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag Berlin Heidelberg, 1991. %F A358624 The general formula for the Hahn polynomials is H(n, x, N, a, b) = (-1)^n*(Pochhammer(N-n, n)*Pochhammer(b+1, n) / n!)*hypergeom([-n, -x, a + b + n + 1], [b + 1, 1 - N], 1). We consider here the case N = a = b = 0. %e A358624 [0] 1; %e A358624 [1] 1, 2; %e A358624 [2] 2, 6, 6; %e A358624 [3] 6, 22, 30, 20; %e A358624 [4] 24, 100, 170, 140, 70; %e A358624 [5] 120, 548, 1050, 1120, 630, 252; %e A358624 [6] 720, 3528, 7476, 8820, 6720, 2772, 924; %e A358624 [7] 5040, 26136, 59388, 78708, 64680, 37884, 12012, 3432; %e A358624 [8] 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870; %p A358624 H := (n, x) -> n!*hypergeom([-x, -n, n + 1], [1, 1], 1): %p A358624 for n from 0 to 8 do seq(coeff(simplify(H(n, x)), x, k), k = 0..n) od; %Y A358624 Cf. A000142, A000984, A001564 (row sums), A133942 (alternating row sums). %K A358624 nonn,tabl %O A358624 0,3 %A A358624 _Peter Luschny_, Nov 26 2022