cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358647 Final digit reached by traveling right (with wraparound) through the digits of n. Each move steps right k places, where k is the digit at the beginning of the move. Moves begin at the most significant digit and d moves are made, where d is the number of digits in n.

This page as a plain text file.
%I A358647 #24 Nov 30 2022 12:39:40
%S A358647 0,1,2,3,4,5,6,7,8,9,0,1,2,1,4,1,6,1,8,1,2,2,2,2,2,2,2,2,2,2,0,3,2,3,
%T A358647 4,3,6,3,8,3,4,4,4,4,4,4,4,4,4,4,0,5,2,5,4,5,6,5,8,5,6,6,6,6,6,6,6,6,
%U A358647 6,6,0,7,2,7,4,7,6,7,8,7,8,8,8,8,8,8,8,8,8,8,0,9,2,9,4,9,6,9,8,9
%N A358647 Final digit reached by traveling right (with wraparound) through the digits of n. Each move steps right k places, where k is the digit at the beginning of the move. Moves begin at the most significant digit and d moves are made, where d is the number of digits in n.
%H A358647 Moosa Nasir, <a href="https://raw.githubusercontent.com/TealEgg/MoosaNasir/main/Example11323.png">Example of n = 11323</a>.
%e A358647 For n = 11323, start at the most significant digit, which is 1.
%e A358647 On move 1, travel 1 unit right, reaching the second digit 1.
%e A358647 On move 2, travel 1 unit right, reaching the middle digit 3.
%e A358647 On move 3, travel 3 units right (wrapping around), reaching the most significant 1 digit again.
%e A358647 On move 4, travel 1 unit right, reaching the second digit 1 (again).
%e A358647 On move 5, travel 1 unit right, reaching the middle digit 3 (again).
%e A358647 Thus, a(11323) = 3.
%o A358647 (C++)
%o A358647 int a(int n)
%o A358647 {
%o A358647     int n2 = n;
%o A358647     int size = 0; do { n2 /= 10; size++; } while (n2 != 0);
%o A358647     int * nums = new int[size];
%o A358647     for(int i = size - 1; i >= 0; i--)
%o A358647     {
%o A358647         nums[i] = n % 10;
%o A358647         n /= 10;
%o A358647     }
%o A358647     int currentIndex = 0;
%o A358647     for (int j = 0; j < size; j++)
%o A358647     {
%o A358647         currentIndex += nums[currentIndex];
%o A358647         currentIndex %= size;
%o A358647     }
%o A358647     int returnVal = nums[currentIndex];
%o A358647     delete[] nums;
%o A358647     return returnVal;
%o A358647 }
%o A358647 (Python)
%o A358647 def A358647(n):
%o A358647     s = list(map(int,str(n)))
%o A358647     l, i = len(s), 0
%o A358647     for _ in range(l):
%o A358647          i = (i+s[i])%l
%o A358647     return s[i] # _Chai Wah Wu_, Nov 30 2022
%Y A358647 Cf. A357531 (stepping in 1..n).
%K A358647 nonn,base,easy
%O A358647 0,3
%A A358647 _Moosa Nasir_, Nov 24 2022