cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358649 Number of convergent n X n matrices over GF(2).

This page as a plain text file.
%I A358649 #34 Jan 03 2025 09:37:14
%S A358649 1,2,11,205,14137,3755249,3916674017,16190352314305,
%T A358649 266479066904477569,17503939768635307654913,
%U A358649 4593798697440979773283368449,4819699338906053452395454422580225,20221058158328101246044232181365184919553
%N A358649 Number of convergent n X n matrices over GF(2).
%C A358649 A matrix A over a finite field is convergent if A^j=A^(j+1) for some j>=1. Every convergent matrix converges to an idempotent matrix. Every idempotent matrix is convergent to itself. Every nilpotent matrix is convergent to the zero matrix.
%F A358649 a(n) = Sum_{k=0..n} A296548(n,k)*A053763(n-k).
%F A358649 Sum_{n>=0} a(n)*x^n/B(n) = f(x)*e(x) where f(x)=Sum_{n>=0} q^(n^2-n)*x^n/B(n), e(x)=Sum_{n>=0} x^n/B(n), B(n)=Product_{i=0..n-1} (q^n-q^i)/(q-1)^n, and q=2. - _Geoffrey Critzer_, Jan 02 2025
%t A358649 nn = 12; q = 2;g[n_] := Product[q^n - q^i, {i, 0, n - 1}]; Table[Sum[g[n]/(g[k] g[n - k]) q^((n - k) (n - k - 1)), {k, 0, n}], {n, 0, nn}]
%Y A358649 Cf. A296548, A053763, A132186, A379778.
%K A358649 nonn
%O A358649 0,2
%A A358649 _Geoffrey Critzer_, Nov 26 2022