A358650 Matula-Goebel tree number of the binomial tree of n vertices.
1, 2, 4, 6, 12, 18, 42, 78, 156, 234, 546, 1014, 2886, 4758, 14118, 30966, 61932, 92898, 216762, 402558, 1145742, 1888926, 5604846, 12293502, 28210026, 45860646, 121727346, 249864654, 813198126, 1423166394, 4740553974, 11234495766, 22468991532, 33703487298
Offset: 1
Examples
The tree of n=13 vertices numbered 0..12 is 0 | \ \ \ 1 2 4 8 | | \ | \ \ 3 5 6 9 10 12 | | 7 11 Vertices 0..7 are the binomial tree of 2^k = 8 vertices, and vertices 8..12 are the binomial tree of 5 vertices. Using the recurrence, a(13) = a(8 + 5) = a(8) * prime(a(5)) = 78*37 = 2886.
Links
- Kevin Ryde, Table of n, a(n) for n = 1..117
- Kevin Ryde, PARI/GP Code
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
PARI
\\ See links.
Formula
a(2^k + r) = a(2^k) * prime(a(r)) for 1 <= r <= 2^k.
a(2^k) = A076146(k+1), being a tree of order k.
Comments