cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358658 Decimal expansion of the asymptotic mean of the e-unitary Euler function (A321167).

Original entry on oeis.org

1, 3, 0, 7, 3, 2, 1, 3, 7, 1, 7, 0, 6, 0, 7, 2, 3, 6, 9, 2, 9, 6, 4, 2, 2, 8, 0, 4, 2, 5, 3, 9, 8, 8, 3, 9, 1, 4, 2, 7, 4, 3, 4, 6, 8, 6, 0, 8, 2, 3, 9, 4, 0, 9, 8, 0, 1, 5, 3, 6, 3, 5, 6, 9, 8, 1, 7, 0, 0, 9, 7, 0, 8, 9, 0, 0, 8, 4, 9, 7, 3, 2, 2, 0, 0, 7, 2, 0, 2, 5, 4, 0, 4, 5, 4, 8, 4, 4, 8, 1, 2, 9, 7, 2, 9
Offset: 1

Views

Author

Amiram Eldar, Nov 25 2022

Keywords

Examples

			1.307321371706072369296422804253988391427434686082394...
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; $MaxExtraPrecision = 500; m = 500; fun[x_] := Log[1 + Sum[x^e*(uphi[e] - uphi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[fun[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[fun[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{m->oo} (1/m) Sum_{k=1..m} A321167(k).
Equals Product_{p prime} (1 + Sum_{e >= 3} (uphi(e) - uphi(e-1))/p^e), where uphi is the unitary totient function (A047994).