A358658 Decimal expansion of the asymptotic mean of the e-unitary Euler function (A321167).
1, 3, 0, 7, 3, 2, 1, 3, 7, 1, 7, 0, 6, 0, 7, 2, 3, 6, 9, 2, 9, 6, 4, 2, 2, 8, 0, 4, 2, 5, 3, 9, 8, 8, 3, 9, 1, 4, 2, 7, 4, 3, 4, 6, 8, 6, 0, 8, 2, 3, 9, 4, 0, 9, 8, 0, 1, 5, 3, 6, 3, 5, 6, 9, 8, 1, 7, 0, 0, 9, 7, 0, 8, 9, 0, 0, 8, 4, 9, 7, 3, 2, 2, 0, 0, 7, 2, 0, 2, 5, 4, 0, 4, 5, 4, 8, 4, 4, 8, 1, 2, 9, 7, 2, 9
Offset: 1
Examples
1.307321371706072369296422804253988391427434686082394...
Links
- Nicuşor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216.
Programs
-
Mathematica
f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; $MaxExtraPrecision = 500; m = 500; fun[x_] := Log[1 + Sum[x^e*(uphi[e] - uphi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[fun[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[fun[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]