cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358659 Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors.

This page as a plain text file.
%I A358659 #8 May 30 2025 08:01:55
%S A358659 9,8,4,8,8,3,6,4,1,8,7,7,2,2,8,2,9,4,0,9,5,3,7,0,1,3,8,0,4,8,9,6,1,1,
%T A358659 3,7,6,4,7,3,1,6,3,2,2,2,2,7,0,5,8,1,3,4,5,5,0,0,6,3,6,2,3,5,5,0,2,2,
%U A358659 3,9,6,8,0,6,5,9,0,8,2,3,8,0,0,8,1,8,9,3,8,0,9,5,5,7,4,0,8,7,6,9,1,3,3,4,4
%N A358659 Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors.
%H A358659 Nicuşor Minculete and László Tóth, <a href="https://doi.org/10.71352/ac.35.205">Exponential unitary divisors</a>, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216.
%F A358659 Equals lim_{m->oo} (1/m) Sum_{k=1..m} A278908(k)/A049419(k).
%F A358659 Equals Product_{p prime} (1 + Sum_{e >= 4} (r(e) - r(e-1))/p^e), where r(e) = A278908(e)/A049419(e).
%e A358659 0.984883641877228294095370138048961137647316322227058...
%t A358659 r[n_] := 2^PrimeNu[n]/DivisorSigma[0, n]; $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e*(r[e] - r[e - 1]), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
%Y A358659 Cf. A049419, A278908.
%Y A358659 Similar sequences: A307869, A308042, A308043.
%K A358659 nonn,cons
%O A358659 0,1
%A A358659 _Amiram Eldar_, Nov 25 2022