This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358659 #8 May 30 2025 08:01:55 %S A358659 9,8,4,8,8,3,6,4,1,8,7,7,2,2,8,2,9,4,0,9,5,3,7,0,1,3,8,0,4,8,9,6,1,1, %T A358659 3,7,6,4,7,3,1,6,3,2,2,2,2,7,0,5,8,1,3,4,5,5,0,0,6,3,6,2,3,5,5,0,2,2, %U A358659 3,9,6,8,0,6,5,9,0,8,2,3,8,0,0,8,1,8,9,3,8,0,9,5,5,7,4,0,8,7,6,9,1,3,3,4,4 %N A358659 Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors. %H A358659 Nicuşor Minculete and László Tóth, <a href="https://doi.org/10.71352/ac.35.205">Exponential unitary divisors</a>, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216. %F A358659 Equals lim_{m->oo} (1/m) Sum_{k=1..m} A278908(k)/A049419(k). %F A358659 Equals Product_{p prime} (1 + Sum_{e >= 4} (r(e) - r(e-1))/p^e), where r(e) = A278908(e)/A049419(e). %e A358659 0.984883641877228294095370138048961137647316322227058... %t A358659 r[n_] := 2^PrimeNu[n]/DivisorSigma[0, n]; $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e*(r[e] - r[e - 1]), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]] %Y A358659 Cf. A049419, A278908. %Y A358659 Similar sequences: A307869, A308042, A308043. %K A358659 nonn,cons %O A358659 0,1 %A A358659 _Amiram Eldar_, Nov 25 2022