cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358667 T(n,k) is the k-th integer j > 1 such that the sum of digits of n^j is a power of n (or -1 if no such k-th integer exists); table read by downward antidiagonals.

This page as a plain text file.
%I A358667 #10 Oct 20 2024 11:41:41
%S A358667 2,3,2,4,3,2,5,9,3,18,6,36,4,88,8,7,85,5,97,208,7,8,176,9,100,977,8,4,
%T A358667 9,194,10,1521,1007,9,11,3,10,200,11,6034,4938,10,4433,12,2,11,375,13,
%U A358667 6052,24709,13,30810,125,18,2,12,1517,16,96867,24733,51,216613,1014,1503,3
%N A358667 T(n,k) is the k-th integer j > 1 such that the sum of digits of n^j is a power of n (or -1 if no such k-th integer exists); table read by downward antidiagonals.
%C A358667 T(11,1) is unknown at this time.
%F A358667 T(n,1) = A358633(n).
%F A358667 T(1,k) = k+1.
%F A358667 T(2,k) = A095412(k+2).
%F A358667 T(3,k) = A118872(k+2).
%e A358667 Table begins:
%e A358667 .
%e A358667    n\k|   1    2     3     4      5     6     7     8    9    10   11 ...
%e A358667    ---+------------------------------------------------------------------
%e A358667     1 |   2    3     4     5      6     7     8     9   10    11   12 ...
%e A358667     2 |   2    3     9    36     85   176   194   200  375  1517  ...
%e A358667     3 |   2    3     4     5      9    10    11    13   16   ...
%e A358667     4 |  18   88    97   100   1521  6034  6052 96867  ...
%e A358667     5 |   8  208   977  1007   4938 24709 24733   ...
%e A358667     6 |   7    8     9    10     13    51   ...
%e A358667     7 |   4   11  4433 30810 216613   ...
%e A358667     8 |   3   12   125  1014    ...
%e A358667     9 |   2   18  1503   ...
%e A358667    10 |   2    3   ...
%e A358667    11 |   ?  ...
%e A358667   ... | ...
%Y A358667 Cf. A095412, A118872, A358633.
%K A358667 nonn,tabl
%O A358667 1,1
%A A358667 _Jon E. Schoenfield_, Nov 25 2022