This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358683 #61 Dec 21 2022 20:47:28 %S A358683 4,4,13,20,58,42,97,59,134,259,104,342,248,140,282,498,542,230,623, %T A358683 438,269,722,517,854,1256,646,320,672,390,730,2767,815,1348,428,2361, %U A358683 524,1564,1553,1002,1729,1670,728,2980,702,1227,668,4125,4172,1477,790,1500,2246,986,3859,2601,2470,2630 %N A358683 a(n) is the sum of all divisors of all positive integers k where A182986(n) < k <= prime(n), n >= 1. %C A358683 a(n) has a symmetric representation as shown in the example. %F A358683 a(n) = Sum_{k=1+A182986(n)..A182986(n+1)} A000203(k), n >= 1. %e A358683 a(1) = sigma(1) + sigma(2) = 1 + 3 = 4. %e A358683 a(2) = sigma(3) = 4. %e A358683 a(3) = sigma(4) + sigma(5) = 7 + 6 = 13. %e A358683 a(4) = sigma(6) + sigma(7) = 12 + 8 = 20. %e A358683 a(5) = sigma(8) + sigma(9) + sigma(10) + sigma(11) = 15 + 13 + 18 + 12 = 58. %e A358683 a(6) = sigma(12) + sigma(13) = 28 + 14 = 42. %e A358683 ... %e A358683 a(40) = sigma(168) + sigma(169) + sigma(170) + sigma(171) + sigma(172) + sigma(173) = 480 + 183 + 324 + 260 + 308 + 174 = 1729. %e A358683 Illustration of initial terms using the Dyck paths described in A237593: %e A358683 . %e A358683 . n prime(n) a(n) Diagram %e A358683 . _ _ _ _ _ _ _ _ _ _ _ _ _ %e A358683 . | | | | | | | %e A358683 . 1 2 4 |_ _|_| | | | | %e A358683 . 2 3 4 |_ _| _ _| | | | %e A358683 . | | _ _| | | %e A358683 . 3 5 13 |_ _ _| _| | | %e A358683 . | | _ _ _| | %e A358683 . 4 7 20 |_ _ _ _| _| _ _ _| %e A358683 . | _| | %e A358683 . | | _| %e A358683 . | | _ _| %e A358683 . 5 11 58 |_ _ _ _ _ _| | %e A358683 . | | %e A358683 . 6 13 42 |_ _ _ _ _ _ _| %e A358683 . %e A358683 The diagram of a(40) = 1729 is too large to include. %t A358683 {Total@ DivisorSigma[1, Range[2]]}~Join~Array[Total@ DivisorSigma[1, Range[Prime[# - 1] + 1, Prime[#]]] &, 56, 2] (* _Michael De Vlieger_, Nov 29 2022 *) %o A358683 (PARI) A358683(n) = sum(k=if(1==n,1,1+prime(n-1)),prime(n),sigma(k)); \\ _Antti Karttunen_, Nov 29 2022 %Y A358683 Partial sums give A244583. %Y A358683 Cf. A000040, A000203, A001235, A024916, A182986, A237270, A237591, A237593, A299763. %K A358683 nonn %O A358683 1,1 %A A358683 _Omar E. Pol_, Nov 26 2022