This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358691 #12 Sep 25 2023 19:24:14 %S A358691 3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A358691 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A358691 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A358691 Gilbreath transform of primes p(2k-1); see Comments. %C A358691 Suppose that S = (s(k)), for k >= 1, is a sequence of real numbers. For n >= 1, let g(1,n) = |s(n+1)-s(n)| and g(k,n) = |g(k-1, n+1) - g(k-1,n)| for k >= 2. %C A358691 We call (g(k,n)) the Gilbreath array of S and (g(n,1)) the Gilbreath transform of S, written as G(S). If S is the sequences of primes, then the Gilbreath conjecture holds that G(S) consists exclusively of 1's. It appears that there are many S such that G(S) is eventually periodic. %C A358691 Conjectured examples of Gilbreath transforms: %C A358691 If S = A000040 (primes), then G(S) = A000012 = (1,1,1,...) %C A358691 If S = A000045 (Fibonacci numbers), then G(S) = A011655 = (0,1,1,0,1,1,...) %C A358691 If S = A000032 (Lucas number)s, G(S) = (2,1,1,0,1,1,0,1,1,...) %C A358691 If S = A031368 (odd-indexed primes), then G(S) = A358691 = (3,3,3,3,1,1,1,...) %C A358691 If S = A031369, then G(S) = A358692 = (1,3,1,1,1,1,...) %C A358691 Two further conjectured examples: %C A358691 (1) If S is the sequence of primes of the form k*n+2, where k is an odd positive integer and n>=0, then G(S) = (k,k,k,...). %C A358691 (2) Suppose that (b(n)) is an increasing arithmetic sequence of positive integers r(s) and S is the sequence of primes p(b(n)). If b(1) = 1, so that S begins with 2, then G(S) is eventually (1,1,1,...); the same holds if b(1) > 1 and S consists of 2 followed by the terms of p(b(n)). %H A358691 <a href="/index/Ge#Gilbreath">Index entries for sequences related to Gilbreath conjecture and transform</a> %e A358691 Corner of successive absolute difference array (including initial row of primes p(2k-1)): %e A358691 2 5 11 17 23 31 41 47 59 67 %e A358691 3 6 6 6 8 10 6 12 8 6 %e A358691 3 0 0 2 2 4 6 4 2 4 %e A358691 3 0 2 0 2 2 2 2 2 0 %e A358691 3 2 2 2 0 0 0 0 2 4 %e A358691 1 0 0 2 0 0 0 2 2 0 %e A358691 1 0 2 2 0 0 2 0 2 0 %t A358691 z = 130; g[t_] := Abs[Differences[t]] %t A358691 t = Prime[-1 + 2 Range[140]] %t A358691 s[1] = g[t]; s[n_] := g[s[n - 1]]; %t A358691 Table[s[n], {n, 1, z}] ; %t A358691 Table[First[s[n]], {n, 1, z}] %Y A358691 Cf. A000040, A031368, A036262, A358692. %K A358691 nonn %O A358691 1,1 %A A358691 _Clark Kimberling_, Nov 27 2022